ZHOU Juanping, LIU Yuhang, HUANG Songjian, ZHANG Wenfang. Research progress on influencing factors of refractive error after cataract surgery[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 127-132. DOI: 10.7619/jcmp.20223367
Citation: ZHOU Juanping, LIU Yuhang, HUANG Songjian, ZHANG Wenfang. Research progress on influencing factors of refractive error after cataract surgery[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 127-132. DOI: 10.7619/jcmp.20223367

Research progress on influencing factors of refractive error after cataract surgery

More Information
  • Received Date: November 11, 2022
  • Available Online: March 14, 2023
  • With the development of micro-phacoemulsification technology in the Department of Ophthalmology, the accurate calculation of intraocular lens diopter is a concern of cataract patients and their surgeons. The reasons affecting the refractive error after cataract operation are the low accuracy of biometric data and the lack of suitable formula for calculating intraocular lens diopter; in addition, factors such as manufacturer, patient's gender, history of refractive surgery and different intraocular fillings may also affect postoperative refraction. This study summarized the factors affecting the accuracy of refractive error after cataract surgery, reviewed the development, advantages and disadvantages of intraocular lens calculation formulas, and provided thoughts for selecting the appropriate intraocular lens in clinical work.

  • [1]
    MASWADI R, BASCARAN C, CLARE G, et al. Cataract surgical services in Palestine[J]. Ophthalmic Epidemiol, 2022, 29(2): 223-231. doi: 10.1080/09286586.2021.1923755
    [2]
    QUINLAN R A, HOGG P J. γ-crystallin redox-detox in the lens[J]. J Biol Chem, 2018, 293(46): 18010-18011. doi: 10.1074/jbc.H118.006240
    [3]
    MARTINEZ-ENRIQUEZ E, PÉREZ-MERINO P, DURÁN-POVEDA S, et al. Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas[J]. Sci Rep, 2018, 8(1): 9829. doi: 10.1038/s41598-018-28272-6
    [4]
    中华医学会眼科学分会. 白内障及人工晶状体学组中国人工晶状体分类专家共识(2021)年[J]. 中华眼科杂志, 2021, 57(7): 495-501.
    [5]
    鲍永珍, 曹晓光, 元力. 白内障摘除手术后正视是否为人工晶状体屈光度数的最佳选择[J]. 中华眼科杂志, 2020, 56(5): 333-336.
    [6]
    JEONG J, SONG H, LEE J K, et al. The effect of ocular biometric factors on the accuracy of various IOL power calculation formulas[J]. BMC Ophthalmol, 2017, 17(1): 62. doi: 10.1186/s12886-017-0454-y
    [7]
    向菁, 管怀进. 人工晶状体计算公式的研究进展[J]. 眼科新进展, 2018, 38(6): 583-587. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201806023.htm
    [8]
    AN Y, KANG E K, KIM H, et al. Accuracy of swept-source optical coherence tomography based biometry for intraocular lens power calculation: a retrospective cross-sectional study[J]. BMC Ophthalmol, 2019, 19(1): 30. doi: 10.1186/s12886-019-1036-y
    [9]
    FLEDELIUS H C. Ultrasound in ophthalmology[J]. Ultrasound Med Biol, 1997, 23(3): 365-375. doi: 10.1016/S0301-5629(96)00213-X
    [10]
    WATSON A, ARMSTRONG R. Contact or immersion technique for axial length measurement?[J]. Aust N Z J Ophthalmol, 1999, 27(1): 49-51. doi: 10.1046/j.1440-1606.1999.00162.x
    [11]
    DREXLER W, FINDL O, MENAPACE R, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery[J]. Am J Ophthalmol, 1998, 126(4): 524-534. doi: 10.1016/S0002-9394(98)00113-5
    [12]
    THOMAS B C, MUELLER A, AUFFARTH G U, et al. Influence on intraocular lens power calculation of corneal radii measurement using an image-guided system[J]. J Cataract Refract Surg, 2016, 42(11): 1588-1594. doi: 10.1016/j.jcrs.2016.08.028
    [13]
    SONG M Y, NOH S R, KIM K Y. Refractive prediction of four different intraocular lens calculation formulas compared between new swept source optical coherence tomography and partial coherence interferometry[J]. PLoS One, 2021, 16(5): e0251152. doi: 10.1371/journal.pone.0251152
    [14]
    COOKE D L, COOKE T L. Comparison of 9 intraocular lens power calculation formulas[J]. J Cataract Refract Surg, 2016, 42(8): 1157-1164. doi: 10.1016/j.jcrs.2016.06.029
    [15]
    张玉婷, 赵春梅, 刘湘云, 等. 人工晶状体度数计算公式的研究现状[J]. 国际眼科杂志, 2021, 21(3): 462-466. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202103020.htm
    [16]
    HOFFER K J. The Hoffer Q formula: a comparison of theoretic and regression formulas[J]. J Cataract Refract Surg, 1993, 19(6): 700-712. doi: 10.1016/S0886-3350(13)80338-0
    [17]
    RETZLAFF J A, SANDERS D R, KRAFF M C. Development of the SRK/T intraocular lens implant power calculation formula[J]. J Cataract Refract Surg, 1990, 16(3): 333-340. doi: 10.1016/S0886-3350(13)80705-5
    [18]
    SANDERS D R, RETZLAFF J, KRAFF M C. Comparison of the SRK Ⅱ formula and other second generation formulas[J]. J Cataract Refract Surg, 1988, 14(2): 136-141. doi: 10.1016/S0886-3350(88)80087-7
    [19]
    MIRAFTAB M, HASHEMI H, FOTOUHI A, et al. Effect of anterior chamber depth on the choice of intraocular lens calculation formula in patients with normal axial length[J]. Middle East Afr J Ophthalmol, 2014, 21(4): 307-311. doi: 10.4103/0974-9233.142266
    [20]
    ARISTODEMOU P, KNOX CARTWRIGHT N E, SPARROW J M, et al. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry[J]. J Cataract Refract Surg, 2011, 37(1): 63-71. doi: 10.1016/j.jcrs.2010.07.032
    [21]
    OLSEN T, HOFFMANN P. C constant: new concept for ray tracing-assisted intraocular lens power calculation[J]. J Cataract Refract Surg, 2014, 40(5): 764-773. doi: 10.1016/j.jcrs.2013.10.037
    [22]
    CHEN C, XU X, MIAO Y Y, et al. Accuracy of intraocular lens power formulas involving 148 eyes with long axial lengths: a retrospective chart-review study[J]. J Ophthalmol, 2015, 2015: 976847.
    [23]
    HOFFER K J, SAVINI G. IOL power calculation in short and long eyes[J]. Asia Pac J Ophthalmol (Phila), 2017, 6(4): 330-331.
    [24]
    夏美云, 朱丹. 白内障术后屈光误差的影响因素及人工晶状体屈光度计算公式选择的研究进展[J]. 中华眼科医学杂志: 电子版, 2020, 10(4): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYB202004011.htm
    [25]
    HOFFER K J. Clinical results using the Holladay 2 intraocular lens power formula[J]. J Cataract Refract Surg, 2000, 26(8): 1233-1237. doi: 10.1016/S0886-3350(00)00376-X
    [26]
    MELLES R B, HOLLADAY J T, CHANG W J. Accuracy of intraocular lens calculation formulas[J]. Ophthalmology, 2018, 125(2): 169-178. doi: 10.1016/j.ophtha.2017.08.027
    [27]
    YAN C, YAO K. Effect of lens vault on the accuracy of intraocular lens calculation formulas in shallow anterior chamber eyes[J]. Am J Ophthalmol, 2022, 233: 57-67. doi: 10.1016/j.ajo.2021.07.011
    [28]
    ARISTODEMOU P, KNOX CARTWRIGHT N E, SPARROW J M, et al. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery[J]. J Cataract Refract Surg, 2011, 37(1): 50-62. doi: 10.1016/j.jcrs.2010.07.037
    [29]
    NEMETH G, MODIS L Jr. Accuracy of the Hill-radial basis function method and the Barrett Universal Ⅱ formula[J]. Eur J Ophthalmol, 2021, 31(2): 566-571. doi: 10.1177/1120672120902952
    [30]
    DARCY K, GUNN D, TAVASSOLI S, et al. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service[J]. J Cataract Refract Surg, 2020, 46(1): 2-7.
    [31]
    YOON J J, MISRA S L, MCGHEE C N J, et al. Demographics and ocular biometric characteristics of patients undergoing cataract surgery in Auckland, New Zealand[J]. Clin Exp Ophthalmol, 2016, 44(2): 106-113. doi: 10.1111/ceo.12634
    [32]
    NATUNG T, SHULLAI W, NONGRUM B, et al. Ocular biometry characteristics and corneal astigmatisms in cataract surgery candidates at a tertiary care center in North-East India[J]. Indian J Ophthalmol, 2019, 67(9): 1417-1423. doi: 10.4103/ijo.IJO_1353_18
    [33]
    HUANG Q, HUANG Y Z, LUO Q, et al. Ocular biometric characteristics of cataract patients in Western China[J]. BMC Ophthalmol, 2018, 18(1): 99. doi: 10.1186/s12886-018-0770-x
    [34]
    WARRIER S, WU H M, NEWLAND H S, et al. Ocular biometry and determinants of refractive error in rural Myanmar: the Meiktila Eye Study[J]. Br J Ophthalmol, 2008, 92(12): 1591-1594. doi: 10.1136/bjo.2008.144477
    [35]
    LUNDQVIST O, WESTIN O, KOSKELA T, et al. Gender differences in refractive prediction in refractive lens exchange surgery[J]. Eur J Ophthalmol, 2015, 25(2): 108-111. doi: 10.5301/ejo.5000522
    [36]
    BEHNDIG A, MONTAN P, LUNDSTRÖM M, et al. Gender differences in biometry prediction error and intra-ocular lens power calculation formula[J]. Acta Ophthalmol, 2014, 92(8): 759-763. doi: 10.1111/aos.12475
    [37]
    KANSAL V, SCHLENKER M, AHMED I I K. Gender does not appear to play a role in biometry prediction error and intra-ocular lens power calculation: in response to: 'Gender differences in biometry prediction error and intra-ocular lens power calculation formula'-Behnig et al., 2014 (Acta Ophthalmologica)[J]. Acta Ophthalmol, 2019, 97(7): e1028-e1030.
    [38]
    ZHANG Y B, LI T Y, REDDY A, et al. Gender differences in refraction prediction error of five formulas for cataract surgery[J]. BMC Ophthalmol, 2021, 21(1): 183. doi: 10.1186/s12886-021-01950-2
    [39]
    PANTANELLI S M, LIN C C, AL-MOHTASEB Z, et al. Intraocular lens power calculation in eyes with previous excimer laser surgery for Myopia: a report by the American academy of ophthalmology[J]. Ophthalmology, 2021, 128(5): 781-792. doi: 10.1016/j.ophtha.2020.10.031
    [40]
    WANG L, TANG M L, HUANG D, et al. Comparison of newer intraocular lens power calculation methods for eyes after corneal refractive surgery[J]. Ophthalmology, 2015, 122(12): 2443-2449. doi: 10.1016/j.ophtha.2015.08.037
    [41]
    ZHANG T, LI S W, LIU C, et al. Acute clouding of a trifocal intraocular lens with spontaneous resolution: a case report[J]. BMC Ophthalmol, 2019, 19(1): 208. doi: 10.1186/s12886-019-1216-9
    [42]
    ZHANG J Q, WANG W, LIU Z Z, et al. Accuracy of new-generation intraocular lens calculation formulas in eyes undergoing combined silicone oil removal and cataract surgery[J]. J Cataract Refract Surg, 2021, 47(5): 593-598. doi: 10.1097/j.jcrs.0000000000000509
    [43]
    AN-NAKHLI F R. Accuracy of new and standard intraocular lens power calculations formulae in Saudi pediatric patients[J]. Taiwan J Ophthalmol, 2019, 9(1): 37-42. doi: 10.4103/tjo.tjo_71_18
    [44]
    TOUZÉ R, DUREAU P, EDELSON C, et al. Congenital cataract surgery: long-term refractive outcomes of a new intraocular lens power correction formula[J]. Acta Ophthalmol, 2022, 100(8): e1641-e1645.
    [45]
    蔡金彪, 王剑锋, 赵芃芃, 等. 高度近视并发性白内障术后屈光误差影响因素的研究进展[J]. 国际眼科杂志, 2021, 21(10): 1720-1723. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202110014.htm
    [46]
    HIPÓLITO-FERNANDES D, ELISA LUÍS M, MALEITA D, et al. Intraocular lens power calculation formulas accuracy in combined phacovitrectomy: an 8-formulas comparison study[J]. Int J Retina Vitreous, 2021, 7(1): 47. doi: 10.1186/s40942-021-00315-7
    [47]
    AL-HABBOUBI H F, AL-ZAMIL W, AL-HABBOUBI A A, et al. Visual outcomes and refractive status after combined silicone oil removal/cataract surgery with intraocular lens implantation[J]. J Ophthalmic Vis Res, 2018, 13(1): 17-22. doi: 10.4103/jovr.jovr_252_16
  • Cited by

    Periodical cited type(4)

    1. 张丽,靳辉. 腕踝针联合Bobath疗法治疗脑卒中上肢运动功能障碍的研究. 湖北中医药大学学报. 2023(03): 98-100 .
    2. 燕炼钢,周婷,贾泽坤,杨娅,江娜,何彦蓉,王储蓄,殷红彪. 针刺阳明经配合补阳还五汤加减治疗气虚血瘀型脑梗死的效果分析. 实用临床医药杂志. 2023(22): 105-109 . 本站查看
    3. 徐瑾,陈新旺,李莉莉. 醒脑开窍针刺疗法联合补阳还五汤加味治疗气虚血瘀型脑梗死恢复期患者的临床效果. 慢性病学杂志. 2022(03): 420-422 .
    4. 陈俊,熊义涛,何俊,张腾. 脑脉通颗粒结合奥拉西坦治疗脑卒中后恢复期(气虚血瘀证)疗效及对认知功能及运动功能影响研究. 中华中医药学刊. 2022(09): 63-66 .

    Other cited types(3)

Catalog

    Article views (215) PDF downloads (29) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return