XU Beibei, XU Kun, HE Jirui. Research progress on role of microRNA-31 in tumor[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 144-148. DOI: 10.7619/jcmp.20223270
Citation: XU Beibei, XU Kun, HE Jirui. Research progress on role of microRNA-31 in tumor[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 144-148. DOI: 10.7619/jcmp.20223270

Research progress on role of microRNA-31 in tumor

More Information
  • Received Date: November 02, 2022
  • Available Online: March 14, 2023
  • MicroRNA-31 (MiR-31) is a multifunctional miRNA widely found in animal and human tissues, which can regulate the expression of target genes and participate in physiological and pathological processes such as cell proliferation, differentiation and apoptosis. The miR-31 is closely related to the occurrence and development of tumors. The miR-31 can be expressed in various tumors as a tumor suppressor or tumor promotion gene, and plays an important role in multiple biological processes such as tumor cell proliferation, invasion and migration. Therefore, miR-31 is expected to be a novel biomarker and therapeutic target for malignant tumors. This article reviewed the research progress in the mechanism of action and treatment prognosis of miR-31 in malignant tumors in order to provide strategies for early diagnosis and personalized treatment of malignant tumors.

  • [1]
    HILL M, TRAN N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4): dmm047662. doi: 10.1242/dmm.047662
    [2]
    WANG Z, SHA H H, LI H J. Functions and mechanisms of miR-186 in human cancer[J]. Biomed Pharmacother, 2019, 119: 109428. doi: 10.1016/j.biopha.2019.109428
    [3]
    SOHEILYFAR S, VELASHJERDI Z, SAYED HAJIZADEH Y, et al. In vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer[J]. J BUON, 2018, 23(5): 1290-1296.
    [4]
    XIE B H, ZHAO Z X, LIU Q Q, et al. CircRNA has_circ_0078710 acts as the sponge of microRNA-31 involved in hepatocellular carcinoma progression[J]. Gene, 2019, 683: 253-261. doi: 10.1016/j.gene.2018.10.043
    [5]
    KOROURIAN A, ROUDI R, SHARIFTABRIZI A, et al. MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells[J]. Exp Biol Med (Maywood), 2017, 242(18): 1842-1847. doi: 10.1177/1535370217728460
    [6]
    LIU B, LI X, XIE J B, et al. LncRNA NRON negatively regulates cisplatin-induced cell apoptosis via downregulating miR-31 in esophageal squamous cell carcinomas[J]. In Vitro Cell Dev Biol Anim, 2022, 58(1): 37-43. doi: 10.1007/s11626-021-00638-7
    [7]
    ZHANG J, YANG Z M, HUANG Y, et al. LncRNA GAS5 inhibits the proliferation and invasion of ovarian clear cell carcinoma via the miR-31-5p/ARID1A axis[J]. Kaohsiung J Med Sci, 2021, 37(11): 940-950. doi: 10.1002/kjm2.12420
    [8]
    CHOI S, LEE S, HAN Y H, et al. MiR-31-3p functions as a tumor suppressor by directly targeting GABBR2 in prostate cancer[J]. Front Oncol, 2022, 12: 945057. doi: 10.3389/fonc.2022.945057
    [9]
    REN Z, LIU J Z, LI J, et al. Decreased lncRNA, TINCR, promotes growth of colorectal carcinoma through upregulating microRNA-31[J]. Aging (Albany NY), 2020, 12(14): 14219-14231.
    [10]
    HU C H, HUANG F Z, DENG G, et al. MiR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1[J]. Exp Ther Med, 2013, 6(5): 1265-1270. doi: 10.3892/etm.2013.1311
    [11]
    KOROURIAN A, MADJD Z, ROUDI R, et al. Induction of miR-31 causes increased sensitivity to 5-FU and decreased migration and cell invasion in gastric adenocarcinoma[J]. Bratisl Lek Listy, 2019, 120(1): 35-39.
    [12]
    JOLLY M K, CELIÀ-TERRASSA T. Dynamics of phenotypic heterogeneity associated with EMT and stemness during cancer progression[J]. J Clin Med, 2019, 8(10): 1542. doi: 10.3390/jcm8101542
    [13]
    MENG W, YE Z Q, CUI R, et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma[J]. Clin Cancer Res, 2013, 19(19): 5423-5433. doi: 10.1158/1078-0432.CCR-13-0320
    [14]
    LIAO S A, XING S X, MA Y H. LncRNA SNHG16 sponges miR-98-5p to regulate cellular processes in osteosarcoma[J]. Cancer Chemother Pharmacol, 2019, 83(6): 1065-1074. doi: 10.1007/s00280-019-03822-5
    [15]
    VALASTYAN S, REINHARDT F, BENAICH N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis[J]. Cell, 2009, 137(6): 1032-1046. doi: 10.1016/j.cell.2009.03.047
    [16]
    MITAMURA T, WATARI H, WANG L, et al. Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET[J]. Oncogenesis, 2013, 2(3): e40. doi: 10.1038/oncsis.2013.3
    [17]
    NOH J H, JUNG K H, KIM J K, et al. Aberrant regulation of HDAC2 mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins[J]. PLoS One, 2011, 6(11): e28103. doi: 10.1371/journal.pone.0028103
    [18]
    LIN P C, CHIU Y L, BANERJEE S, et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression[J]. Cancer Res, 2013, 73(3): 1232-1244. doi: 10.1158/0008-5472.CAN-12-2968
    [19]
    HE J, JIN S D, ZHANG W, et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression[J]. J Cancer, 2019, 10(24): 6003-6013. doi: 10.7150/jca.35097
    [20]
    REN T J, LIU C, HOU J F, et al. CircDDX17 reduces 5-fluorouracil resistance and hinders tumorigenesis in colorectal cancer by regulating miR-31-5p/KANK1 axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1743-1754.
    [21]
    ESLAMIZADEH S, HEIDARI M, AGAH S, et al. The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer[J]. Cell J, 2018, 20(2): 220-230.
    [22]
    DENG B Y, WANG M, LIU Z W. A panel of 8 miRNAs as a novel diagnostic biomarker in pancreatic cancer[J]. Medicine, 2020, 99(38): e22261. doi: 10.1097/MD.0000000000022261
    [23]
    UCHIHATA Y, ARIHIRO K, KANEKO Y, et al. Analysis of microRNA in bile cytologic samples is useful for detection and diagnosis of extrahepatic cholangiocarcinoma[J]. Am J Clin Pathol, 2022, 158(1): 122-131. doi: 10.1093/ajcp/aqac015
    [24]
    OSHIMA S, ASAI S, SEKI N, et al. Identification of tumor suppressive genes regulated by miR-31-5p and miR-31-3p in head and neck squamous cell carcinoma[J]. Int J Mol Sci, 2021, 22(12): 6199. doi: 10.3390/ijms22126199
    [25]
    KAHNG D H, KIM G H, PARK S J, et al. MicroRNA expression in plasma of esophageal squamous cell carcinoma patients[J]. J Korean Med Sci, 2022, 37(24): e197. doi: 10.3346/jkms.2022.37.e197
    [26]
    YI M H, LIAO Z X, DENG L M, et al. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer[J]. Ann Med, 2021, 53(1): 2178-2193. doi: 10.1080/07853890.2021.2000634
    [27]
    JIANG C G, WANG Z N, SUN Z, et al. Clinicopathologic characteristics and prognosis of gastric cancer invading the subserosa[J]. J Surg Oncol, 2010, 102(7): 737-741. doi: 10.1002/jso.21678
    [28]
    KUROGI R, NAKAMIZO A, SUZUKI S O, et al. Inhibition of glioblastoma cell invasion by hsa-miR-145-5p and hsa-miR-31-5p co-overexpression in human mesenchymal stem cells[J]. J Neurosurg, 2018, 130(1): 44-55. doi: 10.3171/2017.8.JNS1788
    [29]
    LEKCHNOV E A, AMELINA E V, BRYZGUNOVA O E, et al. Searching for the novel specific predictors of prostate cancer in urine: the analysis of 84 miRNA expression[J]. Int J Mol Sci, 2018, 19(12): 4088. doi: 10.3390/ijms19124088
    [30]
    YI S J, LIU P, CHEN B L, et al. Circulating miR-31-5p may be a potential diagnostic biomarker in nasopharyngeal carcinoma[J]. Neoplasma, 2019, 66(5): 825-829. doi: 10.4149/neo_2018_181109N847
    [31]
    GHARIB A F, KHALIFA A S, EED E M, et al. Role of microRNA-31 (miR-31) in breast carcinoma diagnosis and prognosis[J]. In Vivo, 2022, 36(3): 1497-1502. doi: 10.21873/invivo.12857
    [32]
    KUMAR V, GUPTA S, VARMA K, et al. Diagnostic performance of microRNA-34a, let-7f and microRNA-31 in epithelial ovarian cancer prediction[J]. J Gynecol Oncol, 2022, 33(4): e49. doi: 10.3802/jgo.2022.33.e49
    [33]
    SANTIAGO-SÁNCHEZ G S, PITA-GRISANTI V, QUIÑONES-DÍAZ B, et al. Biological functions and therapeutic potential of lipocalin 2 in cancer[J]. Int J Mol Sci, 2020, 21(12): 4365. doi: 10.3390/ijms21124365
    [34]
    YANG X D, XU X H, ZHU J J, et al. MiR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts[J]. Oncotarget, 2016, 7(48): 79617-79628. doi: 10.18632/oncotarget.12873
    [35]
    TIAN C, YAO S S, LIU L, et al. Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma[J]. Int J Mol Med, 2017, 39(1): 47-56. doi: 10.3892/ijmm.2016.2812
    [36]
    HOU C Y, SUN B, JIANG Y, et al. MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway[J]. Anticancer Agents Med Chem, 2016, 16(4): 501-518. doi: 10.2174/1871520615666150824152353
    [37]
    LV C, LI F Y, LI X, et al. Author Correction: miR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists[J]. Nat Commun, 2020, 11(1): 5308. doi: 10.1038/s41467-020-19103-2
    [38]
    LIU C Q, WU W, CHANG W J, et al. MiR-31-5p-DMD axis as a novel biomarker for predicting the development and prognosis of sporadic early-onset colorectal cancer[J]. Oncol Lett, 2022, 23(5): 157. doi: 10.3892/ol.2022.13277
    [39]
    ASHOORI H, KAMIAN S, VAHIDIAN F, et al. Correlation of miR-31 and miR-373 expression with KRAS mutations and its impact on prognosis in colorectal cancer[J]. J Egypt Natl Canc Inst, 2022, 34(1): 35. doi: 10.1186/s43046-022-00136-1
    [40]
    ZHENG W J, LIU Z, ZHANG W, et al. MiR-31 functions as an oncogene in cervical cancer[J]. Arch Gynecol Obstet, 2015, 292(5): 1083-1089. doi: 10.1007/s00404-015-3713-2
    [41]
    ISHIGAMI K, NOSHO K, KOIDE H, et al. MicroRNA-31 reflects IL-6 expression in cancer tissue and is related with poor prognosis in bile duct cancer[J]. Carcinogenesis, 2018, 39(9): 1127-1134. doi: 10.1093/carcin/bgy075
  • Cited by

    Periodical cited type(1)

    1. 王国强,张纲,唐建坡,张玉国,杨永江,王俊新. SOX4通过靶向调节miR-17表达水平对结直肠癌细胞免疫逃逸及细胞迁移的影响. 检验医学与临床. 2024(13): 1825-1830+1835 .

    Other cited types(0)

Catalog

    Article views (226) PDF downloads (17) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return