LI Lu, WANG Hongxia, YU Liqiang, FANG Qi. Research progress of intensive care unit-acquired weakness[J]. Journal of Clinical Medicine in Practice, 2023, 27(3): 134-139. DOI: 10.7619/jcmp.20222707
Citation: LI Lu, WANG Hongxia, YU Liqiang, FANG Qi. Research progress of intensive care unit-acquired weakness[J]. Journal of Clinical Medicine in Practice, 2023, 27(3): 134-139. DOI: 10.7619/jcmp.20222707

Research progress of intensive care unit-acquired weakness

More Information
  • Received Date: August 29, 2022
  • Available Online: March 01, 2023
  • Intensive care unit acquired weakness (ICUAW) is a critical disease in patients in the ICU. ICUAW often involves limb muscles and respiratory muscles, resulting in difficulty in offline difficulties, prolonged hospital stay and increased mortality, which seriously affects the prognosis of patients in the ICU. Mechanical ventilation, sepsis, multiple organ failure and systemic inflammatory response syndrome (SIRS) were the common causes of ICUAW. Parenteral nutrition, neuromuscular blockers and the use of large amounts of corticosteroids, braking, etc., can also cause ICUAW. At present, there is no golden standard and treatment strategy for early diagnosis of ICUAW. This paper reviewed the research progress of ICUAW in order to deepen the clinical understanding of ICUAW and improve the diagnosis and treatment ability of clinicians.

  • [1]
    STEVENS R D, MARSHALL S A, CORNBLATH D R, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness[J]. Crit Care Med, 2009, 37(10 Suppl): S299-S308.
    [2]
    INTISO D, CENTRA A M, BARTOLO M, et al. Recovery and long term functional outcome in people with critical illness polyneuropathy and myopathy: a scoping review[J]. BMC Neurol, 2022, 22(1): 50. doi: 10.1186/s12883-022-02570-z
    [3]
    VANHOREBEEK I, LATRONICO N, VAN DEN BERGHE G. ICU-acquired weakness[J]. Intensive Care Med, 2020, 46(4): 637-653. doi: 10.1007/s00134-020-05944-4
    [4]
    SPITZER A R, GIANCARLO T, MAHER L, et al. Neuromuscular causes of prolonged ventilator dependency[J]. Muscle Nerve, 1992, 15(6): 682-686. doi: 10.1002/mus.880150609
    [5]
    VAN AERDE N, MEERSSEMAN P, DEBAVEYE Y, et al. Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study[J]. Intensive Care Med, 2020, 46(6): 1184-1193. doi: 10.1007/s00134-020-05927-5
    [6]
    FARHAN H, MORENO-DUARTE I, LATRONICO N, et al. Acquired muscle weakness in the surgical intensive care unit: nosology, epidemiology, diagnosis, and prevention[J]. Anesthesiology, 2016, 124(1): 207-234. doi: 10.1097/ALN.0000000000000874
    [7]
    MOISEY L L, MOURTZAKIS M, COTTON B A, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients[J]. Crit Care, 2013, 17(5): R206. doi: 10.1186/cc12901
    [8]
    SCHEFOLD J C, BIERBRAUER J, WEBER-CARSTENS S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe Sepsis and septic shock[J]. J Cachexia Sarcopenia Muscle, 2010, 1(2): 147-157. doi: 10.1007/s13539-010-0010-6
    [9]
    WU Y, YAO Y M, LU Z Q. Mitochondrial quality control mechanisms as potential therapeutic targets in Sepsis-induced multiple organ failure[J]. J Mol Med (Berl), 2019, 97(4): 451-462. doi: 10.1007/s00109-019-01756-2
    [10]
    FRIEDRICH O, REID M B, VAN DEN BERGHE G, et al. The sick and the weak: neuropathies/myopathies in the critically ill[J]. Physiol Rev, 2015, 95(3): 1025-1109. doi: 10.1152/physrev.00028.2014
    [11]
    BEDNARÍK J, VONDRACEK P, DUSEK L, et al. Risk factors for critical illness polyneuromyopathy[J]. J Neurol, 2005, 252(3): 343-351. doi: 10.1007/s00415-005-0654-x
    [12]
    ENGELHARDT L J, GRUNOW J J, WOLLERSHEIM T, et al. Sex-specific aspects of skeletal muscle metabolism in the clinical context of intensive care unit-acquired weakness[J]. J Clin Med, 2022, 11(3): 846. doi: 10.3390/jcm11030846
    [13]
    ZHOU W D, SHI B S, FAN Y Y, et al. Effect of early activity combined with early nutrition on acquired weakness in ICU patients[J]. Medicine, 2020, 99(29): e21282. doi: 10.1097/MD.0000000000021282
    [14]
    SCHMIDT S B, ROLLNIK J D. Critical illness polyneuropathy (CIP) in neurological early rehabilitation: clinical and neurophysiological features[J]. BMC Neurol, 2016, 16(1): 256. doi: 10.1186/s12883-016-0775-0
    [15]
    JUNG B, MOURY P H, MAHUL M, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure[J]. Intensive Care Med, 2016, 42(5): 853-861. doi: 10.1007/s00134-015-4125-2
    [16]
    NARDELLI P, KHAN J, POWERS R, et al. Reduced motoneuron excitability in a rat model of Sepsis[J]. J Neurophysiol, 2013, 109(7): 1775-1781. doi: 10.1152/jn.00936.2012
    [17]
    DEN BERGHE G V. On the neuroendocrinopathy of critical illness. perspectives for feeding and novel treatments[J]. Am J Respir Crit Care Med, 2016, 194(11): 1337-1348. doi: 10.1164/rccm.201607-1516CI
    [18]
    KNY M, FIELITZ J. Hidden agenda - the involvement of endoplasmic Reticulum stress and unfolded protein response in inflammation-induced muscle wasting[J]. Front Immunol, 2022, 13: 878755. doi: 10.3389/fimmu.2022.878755
    [19]
    LI Y P, REID M B. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes[J]. Am J Physiol Regul Integr Comp Physiol, 2000, 279(4): R1165-R1170. doi: 10.1152/ajpregu.2000.279.4.R1165
    [20]
    ROSSIGNOL B, GUERET G, PENNEC J P, et al. Effects of chronic Sepsis on the voltage-gated sodium channel in isolated rat muscle fibers[J]. Crit Care Med, 2007, 35(2): 351-357. doi: 10.1097/01.CCM.0000254335.88023.0E
    [21]
    AARE S, OCHALA J, NORMAN H S, et al. Mechanisms underlying the sparing of masticatory versus limb muscle function in an experimental critical illness model[J]. Physiol Genomics, 2011, 43(24): 1334-1350. doi: 10.1152/physiolgenomics.00116.2011
    [22]
    MATECKI S, JUNG B, SAINT N, et al. Respiratory muscle contractile inactivity induced by mechanical ventilation in piglets leads to leaky ryanodine receptors and diaphragm weakness[J]. J Muscle Res Cell Motil, 2017, 38(1): 17-24. doi: 10.1007/s10974-017-9464-x
    [23]
    IBEBUNJO C, CHICK J M, KENDALL T, et al. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia[J]. Mol Cell Biol, 2013, 33(2): 194-212. doi: 10.1128/MCB.01036-12
    [24]
    HOLECEK M. Muscle wasting in animal models of severe illness[J]. Int J Exp Pathol, 2012, 93(3): 157-171. doi: 10.1111/j.1365-2613.2012.00812.x
    [25]
    SAFRÁNEK R, ISHIBASHI N, OKA Y, et al. Modulation of inflammatory response in Sepsis by proteasome inhibition[J]. Int J Exp Pathol, 2006, 87(5): 369-372. doi: 10.1111/j.1365-2613.2006.00490.x
    [26]
    DERDE S, VANHOREBEEK I, GVIZA F, et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits[J]. Endocrinology, 2012, 153(5): 2267-2276. doi: 10.1210/en.2011-2068
    [27]
    FRIEDRICH O, HUND E, WEBER C, et al. Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle[J]. J Neurol, 2004, 251(1): 53-65. doi: 10.1007/s00415-004-0272-z
    [28]
    CAMDESSANCHÉJ P. End-plate disorders in intensive care unit[J]. J Clin Neurophysiol, 2020, 37(3): 211-213. doi: 10.1097/WNP.0000000000000659
    [29]
    LATRONICO N, BOLTON C F. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis[J]. Lancet Neurol, 2011, 10(10): 931-941. doi: 10.1016/S1474-4422(11)70178-8
    [30]
    SCHEFOLD J C, WOLLERSHEIM T, GRUNOW J J, et al. Muscular weakness and muscle wasting in the critically ill[J]. J Cachexia Sarcopenia Muscle, 2020, 11(6): 1399-1412. doi: 10.1002/jcsm.12620
    [31]
    HERMANS G, VAN MECHELEN H, CLERCKX B, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis[J]. Am J Respir Crit Care Med, 2014, 190(4): 410-420. doi: 10.1164/rccm.201312-2257OC
    [32]
    SOCIETY A T S R. ATS/ERS Statement on respiratory muscle testing[J]. Am J Respir Crit Care Med, 2002, 166(4): 518-624. doi: 10.1164/rccm.166.4.518
    [33]
    STOUT J R, FRAGALA M S, HOFFMAN J R, et al. C-terminal agrin fragment is inversely related to neuromuscular fatigue in older men[J]. Muscle Nerve, 2015, 51(1): 132-133. doi: 10.1002/mus.24443
    [34]
    ROTH G A, MOSER B, KRENN C, et al. Heightened levels of circulating 20S proteasome in critically ill patients[J]. Eur J Clin Invest, 2005, 35(6): 399-403. doi: 10.1111/j.1365-2362.2005.01508.x
    [35]
    ZHANG W Q, WU J, GU Q Y, et al. Changes in muscle ultrasound for the diagnosis of intensive care unit acquired weakness in critically ill patients[J]. Sci Rep, 2021, 11(1): 18280. doi: 10.1038/s41598-021-97680-y
    [36]
    PIVA S, FAGONI N, LATRONICO N. Intensive care unit-acquired weakness: unanswered questions and targets for future research[J]. F1000Res, 2019, 8: F1000FacultyRev-F1000Faculty508. doi: 10.12688/f1000research.19590.2
    [37]
    STIBLER H, EDSTRÖM L, AHLBECK K, et al. Electrophoretic determination of the myosin/actin ratio in the diagnosis of critical illness myopathy[J]. Intensive Care Med, 2003, 29(9): 1515-1527. doi: 10.1007/s00134-003-1894-9
    [38]
    GOOSSENS C, WECKX R, DERDE S, et al. Adipose tissue protects against Sepsis-induced muscle weakness in mice: from lipolysis to ketones[J]. Crit Care, 2019, 23(1): 236. doi: 10.1186/s13054-019-2506-6
  • Cited by

    Periodical cited type(2)

    1. 李萍,徐艳芳,胡帅,曾晓霞,胡娟娟,漆学良. 热射病致吉兰-巴雷综合征三例并文献复习. 中国现代神经疾病杂志. 2024(05): 352-358 .
    2. 谢霜霜,谢丹. 体外膈肌起搏器联合神经肌肉电刺激仪在ICU获得性肌无力机械通气患者中的应用. 医疗装备. 2024(24): 26-29+34 .

    Other cited types(0)

Catalog

    Article views (265) PDF downloads (22) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return