Citation: | XU Jixue, ZHANG Bowen, WEI Luanting, LIANG Chenhao, WU Yuting, ZHAO Yan, LI Cheng. Application progress of biochip technology in biomedical research[J]. Journal of Clinical Medicine in Practice, 2023, 27(1): 126-130. DOI: 10.7619/jcmp.20222528 |
Biochip technology, which derived from Southern blotting technology, is a high-throughput micro-analysis technology based on the principle of specific interactions between biomolecules. From simply integrating biological components to reducing costs and improving efficiency, to optimizing and integrating experimental steps by combining microlithography technology and various microfluidic structures, then to simulating the natural state of tissues and organs, biochip technology is developing rapidly, and shows great application prospects in the field of medical biological research. This review briefly described the concept, development and classification of biochip technology, then systemarically enumerated the up-to-date application progress of different types of biochips in biomedical research.
[1] |
SHORT K M, HOPWOOD B, YI Z, et al. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders[J]. BMC Cell Biol, 2002, 3: 1. doi: 10.1186/1471-2121-3-1
|
[2] |
高志勇. 生物芯片发展及寡核苷酸基因芯片应用研究[M]. 北京: 科学出版社, 2017: 101-112.
|
[3] |
杜崇, 姜景彬, 张贺, 等. 生物芯片在植物分子生物研究中的应用与发展[J]. 分子植物育种, 2017, 15(9): 3701-3708. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201709044.htm
|
[4] |
LIU J J, XU Y C, CHENG J. Biochips under COVID-19: a new stage of well-grounded development and accelerated translation[J]. Sci Bull (Beijing), 2022, 67(18): 1823-1826. doi: 10.1016/j.scib.2022.08.003
|
[5] |
张泽宇. 生物芯片技术在临床检验医学中的应用[J]. 中国新技术新产品, 2018(3): 126-127. doi: 10.3969/j.issn.1673-9957.2018.03.078
|
[6] |
FENG G, HAN W H, SHI J Y, et al. Analysis of the application of a gene chip method for detecting Mycobacterium tuberculosis drug resistance in clinical specimens: a retrospective study[J]. Sci Rep, 2021, 11(1): 17951. doi: 10.1038/s41598-021-97559-y
|
[7] |
薛青霞, 何鑫, 邵佰斌. 染色体核型分析联合基因芯片在产前出生缺陷筛查中的应用[J]. 中国妇幼保健, 2021, 36(13): 3106-3109. doi: 10.19829/j.zgfybj.issn.1001-4411.2021.13.057
|
[8] |
ZHOU L, ZHU W T, WANG G X, et al. Investigation of microRNA expression signatures in HCC via microRNA Gene Chip and bioinformatics analysis[J]. Pathol Res Pract, 2020, 216(6): 152982. doi: 10.1016/j.prp.2020.152982
|
[9] |
黄姗, 任燕燕, 韦四喜, 等. PCR-电化学基因芯片法在人乳头瘤病毒感染检测中的价值[J]. 贵州医科大学学报, 2022, 47(1): 26-30, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYB202201005.htm
|
[10] |
MCCORD J M, HYBERTSON B M, COTA-GOMEZ A, et al. Nrf2 activator PB125? as a potential therapeutic agent against COVID-19[J]. Antioxidants (Basel), 2020, 9(6): 518. doi: 10.3390/antiox9060518
|
[11] |
CHEN F, HE J A, DONG R L, et al. Application of SPR protein chip in screening for imported malaria[J]. Sheng Wu Gong Cheng Xue Bao, 2021, 37(4): 1360-1367.
|
[12] |
SUN G H, LIU J, WAN L, et al. Differentially expressed inflammatory proteins in acute gouty arthritis based on protein chip[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(6): 743-749.
|
[13] |
SUN G Y, YE H, WANG X, et al. Identification of novel autoantibodies based on the protein chip encoded by cancer-driving genes in detection of esophageal squamous cell carcinoma[J]. Oncoimmunology, 2020, 9(1): 1814515. doi: 10.1080/2162402X.2020.1814515
|
[14] |
KALLI M, BLOK A, JIANG L, et al. Development of a protein microarray-based diagnostic chip mimicking the skin prick test for allergy diagnosis[J]. Sci Rep, 2020, 10(1): 18208. doi: 10.1038/s41598-020-75226-y
|
[15] |
ABBAS N, LU X, BADSHAH M A, et al. Development of a protein microarray chip with enhanced fluorescence for identification of semen and vaginal fluid[J]. Sensors (Basel), 2018, 18(11): 3874. doi: 10.3390/s18113874
|
[16] |
蔡苏娜, 李强, 周慧, 等. 白杨素通过抑制PI3K/AKT/mTOR信号通路发挥抗炎和抗氧化作用: 基于蛋白质芯片方法[J]. 南方医科大学学报, 2021, 41(10): 1554-1561. doi: 10.12122/j.issn.1673-4254.2021.10.15
|
[17] |
OUELLET V, ERICKSON A, INVESTIGATORS G A P 1 U C, et al. The movember global action plan 1 (GAP1): unique prostate cancer tissue microarray resource[J]. Cancer Epidemiol Biomarkers Prev, 2022, 31(4): 715-727. doi: 10.1158/1055-9965.EPI-21-0600
|
[18] |
REN L, ZHOU X W, NASIRI R, et al. Combined effects of electric stimulation and microgrooves in cardiac tissue-on-a-chip for drug screening[J]. Small Methods, 2020, 4(10): 2000438. doi: 10.1002/smtd.202000438
|
[19] |
LEE C J, WOZNIAK A, VAN CANN T, et al. Establishment of an academic tissue microarray platform as a tool for soft tissue sarcoma research[J]. Sarcoma, 2021, 2021: 6675260.
|
[20] |
KIM G J, LEE K J, CHOI J W, et al. Modified industrial three-dimensional polylactic acid scaffold cell chip promotes the proliferation and differentiation of human neural stem cells[J]. Int J Mol Sci, 2022, 23(4): 2204. doi: 10.3390/ijms23042204
|
[21] |
ABDULLA A, ZHANG T, LI S H, et al. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells[J]. Microsyst Nanoeng, 2022, 8: 13. doi: 10.1038/s41378-021-00342-2
|
[22] |
LIU Y, CHEN X, CHEN J M, et al. Gel-free single-cell culture arrays on a microfluidic chip for highly efficient expansion and recovery of colon cancer stem cells[J]. ACS Biomater Sci Eng, 2022, 8(8): 3623-3632. doi: 10.1021/acsbiomaterials.2c00378
|
[23] |
HOUEIX B, SYNOWSKY S, CAIRNS M T, et al. Identification of putative adhesins and carbohydrate ligands of Lactobacillus paracasei using a combinatorial in silico and glycomics microarray profiling approach[J]. Integr Biol (Camb), 2019, 11(7): 315-329.
|
[24] |
NANNO Y, STERNER E, GILDERSLEEVE J C, et al. Carbohydrate antigen microarray analysis of serum IgG and IgM antibodies before and after adult porcine islet xenotransplantation in cynomolgus macaques[J]. PLoS One, 2021, 16(6): e0253029. doi: 10.1371/journal.pone.0253029
|
[25] |
WAKAO M, MIYAHARA T, ⅡBOSHI K, et al. Synthesis of mucin type core 3 and core 5 structures and their interaction analysis with sugar chips[J]. Carbohydr Res, 2022, 516: 108565. doi: 10.1016/j.carres.2022.108565
|
[26] |
DANKU A E, DULF E H, BRAICU C, et al. Organ-on-A-chip: a survey of technical results and problems[J]. Front Bioeng Biotechnol, 2022, 10: 840674.
|
[27] |
GOLDSTEIN Y, SPITZ S, TURJEMAN K, et al. Breaking the third wall: implementing 3D-printing technics to expand the complexity and abilities of multi-organ-on-a-chip devices[J]. Micromachines, 2021, 12(6): 627.
|
[28] |
CLARKE G A, HARTSE B X, NIARAKI ASLI A E, et al. Advancement of sensor integrated organ-on-chip devices[J]. Sensors (Basel), 2021, 21(4): 1367.
|
[29] |
ROTHBAUER M, BACHMANN B E M, EILENBERGER C, et al. A decade of organs-on-a-chip emulating human physiology at the microscale: a critical status report on progress in toxicology and pharmacology[J]. Micromachines, 2021, 12(5): 470.
|
[30] |
AZIZIPOUR N, AVAZPOUR R, ROSENZWEIG D H, et al. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip[J]. Micromachines, 2020, 11(6): 599.
|