MENG Yiqun, ZHANG Zhenwen. Research progress on relationship between Coronavirus Disease 2019 and diabetes[J]. Journal of Clinical Medicine in Practice, 2023, 27(1): 140-144, 148. DOI: 10.7619/jcmp.20222272
Citation: MENG Yiqun, ZHANG Zhenwen. Research progress on relationship between Coronavirus Disease 2019 and diabetes[J]. Journal of Clinical Medicine in Practice, 2023, 27(1): 140-144, 148. DOI: 10.7619/jcmp.20222272

Research progress on relationship between Coronavirus Disease 2019 and diabetes

More Information
  • Received Date: July 24, 2022
  • Available Online: February 01, 2023
  • Diabetes is associated with the high risk of death of severe Coronavirus Disease 2019 (COVID-19), and the management levels of glycosylated hemoglobin (HbA1c) and blood glucose are also associated with the adverse outcomes of COVID-19. The proportion of newly diagnosed diabetes patients with COVID-19 is higher than that normal people, and severe patients may even cause diabetes ketoacidosis (DKA). In clinic, appropriate hypoglycemic regimen can improve the prognosis of COVID-19 patients. The relationship between COVID-19 and diabetes is complex. The article aimed to elaborate relevant studies and explore their relationship.

  • [1]
    HARTMANN-BOYCE J, REES K, PERRING J C, et al. Erratum. risks of and from SARS-CoV-2 infection and COVID-19 in people with diabetes: asystematic review of reviews[J]. Diabetes Care, 2022, 45(6): 1489. doi: 10.2337/dc22-er06
    [2]
    HOLMAN N, KNIGHTON P, KAR P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study[J]. Lancet Diabetes Endocrinol, 2020, 8(10): 823-833. doi: 10.1016/S2213-8587(20)30271-0
    [3]
    APICELLA M, CAMPOPIANOM C, MANTUANO M, et al. COVID-19 in people with diabetes: understanding the reasons for worse outcomes[J]. Lancet Diabetes Endocrinol, 2020, 8(9): 782-792. doi: 10.1016/S2213-8587(20)30238-2
    [4]
    GREGGE W, SOPHIEAM K, WELDEGIORGIS M. Diabetes and COVID-19: population impact 18 months into the pandemic[J]. Diabetes Care, 2021, 44(9): 1916-1923. doi: 10.2337/dci21-0001
    [5]
    SINGHA K, SINGH R. Hyperglycemia without diabetes and new-onset diabetes are both associated with poorer outcomes in COVID-19[J]. Diabetes Res Clin Pract, 2020, 167: 108382. doi: 10.1016/j.diabres.2020.108382
    [6]
    CHEEY J, NGS J H, YEOH E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus[J]. Diabetes Res Clin Pract, 2020, 164: 108166. doi: 10.1016/j.diabres.2020.108166
    [7]
    MEHTA P, MCAULEYD F, BROWN M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034. doi: 10.1016/S0140-6736(20)30628-0
    [8]
    GUAN W J, NI Z Y, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18): 1708-1720.
    [9]
    ZHANG Y, CUI Y H, SHEN M X, et al. Association of diabetes mellitus with disease severity and prognosis in COVID-19: a retrospective cohort study[J]. Diabetes Res Clin Pract, 2020, 165: 108227. doi: 10.1016/j.diabres.2020.108227
    [10]
    IZCOVICH A, RAGUSAM A, TORTOSA F, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: a systematic review[J]. PLoS One, 2020, 15(11): e0241955. doi: 10.1371/journal.pone.0241955
    [11]
    ZHANGH B, PENNINGERJ M, LIY M, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target[J]. Intensive Care Med, 2020, 46(4): 586-590. doi: 10.1007/s00134-020-05985-9
    [12]
    CHEEMAA K, KAUR P, FADEL A, et al. Integrated datasets of proteomic and metabolomic biomarkers to predict its impacts on comorbidities of type 2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2020, 13: 2409-2431. doi: 10.2147/DMSO.S244432
    [13]
    CARIOU B, HADJADJ S, WARGNY M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study[J]. Diabetologia, 2020, 63(8): 1500-1515. doi: 10.1007/s00125-020-05180-x
    [14]
    WU J F, HUANG J Q, ZHU G C, et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001476. doi: 10.1136/bmjdrc-2020-001476
    [15]
    MEMON S S, BISWASDA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management[J]. Cureus, 2022, 14(11): e31895.
    [16]
    NORRIS T, RAZIEH C, YATES T, et al. Admission blood glucose level and its association with cardiovascular and renal complications in patients hospitalized with COVID-19[J]. Diabetes Care, 2022, 45(5): 1132-1140. doi: 10.2337/dc21-1709
    [17]
    SATHISH T, KAPOOR N, CAO Y T, et al. Proportion of newly diagnosed diabetes in COVID-19 patients: a systematic review and meta-analysis[J]. Diabetes Obes Metab, 2021, 23(3): 870-874. doi: 10.1111/dom.14269
    [18]
    AL-ALY Z, XIE Y, BOWE B. High-dimensional characterization of post-acute sequelae of COVID-19[J]. Nature, 2021, 594(7862): 259-264. doi: 10.1038/s41586-021-03553-9
    [19]
    WANDERP L, LOWY E, BESTEL A, et al. The incidence of diabetes among 2, 777, 768 veterans with and without recent SARS-CoV-2 infection[J]. Diabetes Care, 2022, 45(4): 782-788. doi: 10.2337/dc21-1686
    [20]
    BARRETTC E, KOYAMAA K, ALVAREZ P, et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged < 18 years-United States, March 1, 2020-June 28, 2021[J]. MMWR Morb Mortal Wkly Rep, 2022, 71(2): 59-65. doi: 10.15585/mmwr.mm7102e2
    [21]
    KHUNTI K, DEL PRATO S, MATHIEU C, et al. COVID-19, hyperglycemia, and new-onset diabetes[J]. Diabetes Care, 2021, 44(12): 2645-2655. doi: 10.2337/dc21-1318
    [22]
    GAZZARUSO C, COPPOLA A, GALLOTTI P, et al. Comment on khunti et al. COVID-19, hyperglycemia, and new-onset diabetes. diabetes care 2021; 44: 2645-2655[J]. Diabetes Care, 2022, 45(2): e45. doi: 10.2337/dc21-2241
    [23]
    YAZDANPANAH N, REZAEI N. Autoimmune complications of COVID-19[J]. J Med Virol, 2022, 94(1): 54-62. doi: 10.1002/jmv.27292
    [24]
    LUID T W, LEEC H, CHOWW S, et al. Insights from a prospective follow-up of thyroid function and autoimmunity among COVID-19 survivors[J]. Endocrinol Metab (Seoul), 2021, 36(3): 582-589. doi: 10.3803/EnM.2021.983
    [25]
    MURUGANA K, ALZAHRANIA S. SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves' disease[J]. Endocrine, 2021, 73(2): 243-254. doi: 10.1007/s12020-021-02770-6
    [26]
    CHEN N S, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7
    [27]
    ZHOU P, YANGX L, WANGX G, et al. Addendum: a pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 588(7836): E6. doi: 10.1038/s41586-020-2951-z
    [28]
    LAN J, GE J W, YU J F, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215-220. doi: 10.1038/s41586-020-2180-5
    [29]
    FIGNANI D, LICATA G, BRUSCO N, et al. SARS-CoV-2 receptor angiotensin I-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the human pancreas microvasculature[J]. Front Endocrinol (Lausanne), 2020, 11: 596898. doi: 10.3389/fendo.2020.596898
    [30]
    COATE K C, CHA J, SHRESTHA S, et al. SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in βcells[J]. Cell Metab, 2020, 32(6): 1028-1040, e4. doi: 10.1016/j.cmet.2020.11.006
    [31]
    KUSMARTSEVA I, WU W T, SYED F, et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19[J]. Cell Metab, 2020, 32(6): 1041-1051, e6. doi: 10.1016/j.cmet.2020.11.005
    [32]
    TANEERA J, EL-HUNEIDI W, HAMAD M, et al. Expression profile of SARS-CoV-2 host receptors in human pancreatic islets revealed upregulation of ACE2 in diabetic donors[J]. Biology (Basel), 2020, 9(8): 215.
    [33]
    HOLLSTEIN T, SCHULTED M, SCHULZ J, et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report[J]. Nat Metab, 2020, 2(10): 1021-1024. doi: 10.1038/s42255-020-00281-8
    [34]
    CARLSSONP O, BERNE C, JANSSON L. Angiotensin Ⅱ and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats[J]. Diabetologia, 1998, 41(2): 127-133. doi: 10.1007/s001250050880
    [35]
    AKASHM S H, REHMAN K, LIAQAT A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus[J]. J Cell Biochem, 2018, 119(1): 105-110. doi: 10.1002/jcb.26174
    [36]
    XU E, PEREIRAM M A, KARAKASILIOTI I, et al. Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance[J]. Nat Commun, 2017, 8: 14803. doi: 10.1038/ncomms14803
    [37]
    KOBASHI C, ASAMIZU S, ISHIKI M, et al. Inhibitory effect of IL-8 on insulin action in human adipocytes via MAP kinase pathway[J]. J Inflamm (Lond), 2009, 6: 25. doi: 10.1186/1476-9255-6-25
    [38]
    MUNIANGI-MUHITU H, AKALESTOU E, SALEM V, et al. Covid-19 and diabetes: acomplex bidirectional relationship[J]. Front Endocrinol (Lausanne), 2020, 11: 582936. doi: 10.3389/fendo.2020.582936
    [39]
    NAYAR M, VARGHESE C, KANWAR A, et al. SARS-CoV-2 infection is associated with an increased risk of idiopathic acute pancreatitis but not pancreatic exocrine insufficiency or diabetes: long-term results of the COVIDPAN study[J]. Gut, 2022, 71(7): 1444-1447. doi: 10.1136/gutjnl-2021-326218
    [40]
    MISRA S, BARRON E, VAMOS E, et al. Temporal trends in emergency admissions for diabetic ketoacidosis in people with diabetes in England before and during the COVID-19 pandemic: a population-based study[J]. Lancet Diabetes Endocrinol, 2021, 9(10): 671-680. doi: 10.1016/S2213-8587(21)00208-4
    [41]
    ZHONGV W, JUHAERI J, MAYER-DAVISE J. Trends in hospital admission for diabetic ketoacidosis in adults with type 1 and type 2 diabetes in England, 1998-2013: aretrospective cohort study[J]. Diabetes Care, 2018, 41(9): 1870-1877. doi: 10.2337/dc17-1583
    [42]
    LIJ Y, WANGX F, CHEN J, et al. COVID-19 infection may cause ketosis and ketoacidosis[J]. Diabetes ObesMetab, 2020, 22(10): 1935-1941.
    [43]
    KUCHAYM S, REDDYP K, GAGNEJA S, et al. Short term follow-up of patients presenting with acute onset diabetes and diabetic ketoacidosis during an episode of COVID-19[J]. Diabetes Metab Syndr, 2020, 14(6): 2039-2041. doi: 10.1016/j.dsx.2020.10.015
    [44]
    RUBINO F, AMIELS A, ZIMMET P, et al. New-onset diabetes in covid-19[J]. N Engl J Med, 2020, 383(8): 789-790. doi: 10.1056/NEJMc2018688
    [45]
    CROUSEA B, GRIMES T, LI P, et al. Metformin use is associated with reduced mortality in a diverse population with COVID-19 and diabetes[J]. Front Endocrinol (Lausanne), 2020, 11: 600439.
    [46]
    HARIYANTOT I, KURNIAWAN A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection[J]. Obes Med, 2020, 19: 100290. doi: 10.1016/j.obmed.2020.100290
    [47]
    KAHKOSKAA R, ABRAHAMSENT J, ALEXANDERG C, et al. Association between glucagon-like peptide 1 receptor agonist and sodium-glucose cotransporter 2 inhibitor use and COVID-19 outcomes[J]. Diabetes Care, 2021, 44(7): 1564-1572. doi: 10.2337/dc21-0065
    [48]
    DRUCKERD J. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications[J]. Endocr Rev, 2020, 41(3): bnaa011. doi: 10.1210/endrev/bnaa011
    [49]
    GAO Q, ZHANGW J, LIT T, et al. Interrelationship between 2019-nCov receptor DPP4 and diabetes mellitus targets based on protein interaction network[J]. Sci Rep, 2022, 12(1): 188. doi: 10.1038/s41598-021-03912-6
    [50]
    RYANP M, CAPLICEN M. Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus disease 2019[J]. Obesity (Silver Spring), 2020, 28(7): 1191-1194. doi: 10.1002/oby.22843
    [51]
    VITALER J, VALTISY K, MCDONNELLM E, et al. Euglycemic diabetic ketoacidosis with COVID-19 infection in patients with type 2 diabetes taking SGLT2 inhibitors[J]. AACE Clin Case Rep, 2021, 7(1): 10-13. doi: 10.1016/j.aace.2020.11.019
    [52]
    DASS B, BECK A, HOLMES C, et al. Euglycemic DKA (euDKA) as a presentation of COVID-19[J]. Clin Case Rep, 2021, 9(1): 395-398. doi: 10.1002/ccr3.3540
    [53]
    SARDU C, D'ONOFRIO N, BALESTRIERIM L, et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control[J]. Diabetes Care, 2020, 43(7): 1408-1415. doi: 10.2337/dc20-0723
    [54]
    KATULANDA P, DISSANAYAKEH A, RANATHUNGA I, et al. Prevention and management of COVID-19 among patients with diabetes: an appraisal of the literature[J]. Diabetologia, 2020, 63(8): 1440-1452. doi: 10.1007/s00125-020-05164-x
    [55]
    ALHAZZANI W, MØLLERM H, ARABIY M, et al. Surviving Sepsiscampaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19)[J]. Crit Care Med, 2020, 48(6): e440-e469. doi: 10.1097/CCM.0000000000004363
    [56]
    MAW X, RANX W. The management of blood glucose should be emphasized in the treatment of COVID-19[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2020, 51(2): 146-150.
    [57]
    BERTONA M, PRENCIPE N, GIORDANO R, et al. Systemic steroids in patients with COVID-19: pros and contras, an endocrinological point of view[J]. J Endocrinol Invest, 2021, 44(4): 873-875. doi: 10.1007/s40618-020-01325-2
    [58]
    WANG A H, ZHAO W B, XU Z R, et al. Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed[J]. Diabetes Res Clin Pract, 2020, 162: 108118. doi: 10.1016/j.diabres.2020.108118
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (271) PDF downloads (43) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return