WU Xiaomei, YU Junmin, ZHAO Yuanyuan, CHEN Hongye, LI Dahe, ZHANG Xiaobo. Research progress on coexistent mechanism of heart failure and atrial fibrillation in elderly patients[J]. Journal of Clinical Medicine in Practice, 2022, 26(24): 138-142. DOI: 10.7619/jcmp.20221892
Citation: WU Xiaomei, YU Junmin, ZHAO Yuanyuan, CHEN Hongye, LI Dahe, ZHANG Xiaobo. Research progress on coexistent mechanism of heart failure and atrial fibrillation in elderly patients[J]. Journal of Clinical Medicine in Practice, 2022, 26(24): 138-142. DOI: 10.7619/jcmp.20221892

Research progress on coexistent mechanism of heart failure and atrial fibrillation in elderly patients

More Information
  • Received Date: June 16, 2022
  • Available Online: January 06, 2023
  • Heart failure can induce atrial fibrillation by activating myocardial fibrosis, cardiac remodeling and renin-angiotension-aldosterone system (RAAS), and atrial electrical and structural remodeling can further aggravate heart failure. Inflammatory reaction, oxidative stress and neuroendocrine imbalance make the coexistent status of failure and atrial fibrillation, and also involve substance metabolism, non-coding ribonucleic acid (RNA) expression and immune regulation mechanism.

  • [1]
    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202106001.htm
    [2]
    周蕾, 高占强. 心力衰竭合并心房颤动患者凝血指标、生化指标与静脉血栓发生情况分析[J]. 实用临床医药杂志, 2020, 24(18): 50-53 doi: 10.7619/jcmp.202018014
    [3]
    SONG P, ZHAO Q, ZOU M H. Targeting senescent cells to attenuate cardiovascular disease progression[J]. Ageing Res Rev, 2020, 60: 101072. doi: 10.1016/j.arr.2020.101072
    [4]
    TRACY E, ROWE G, LEBLANC A J. Cardiac tissue remodeling in healthy aging: the road to pathology[J]. Am J Physiol Cell Physiol, 2020, 319(1): C166-C182. doi: 10.1152/ajpcell.00021.2020
    [5]
    ROSANO G, SAVARESE G. Inter-twinned relationship between heart failure and atrial fibrillation[J]. Heart, 2020, 106(15): 1125-1126. doi: 10.1136/heartjnl-2020-316886
    [6]
    ABBASI M H, MAAN A, HEIST E K. The care of patients with atrial fibrillation and heart failure[J]. Crit Pathw Cardiol, 2021, 20(2): 93-99. doi: 10.1097/HPC.0000000000000235
    [7]
    BENZ A P, AESCHBACHER S, KRISAI P, et al. Biomarkers of inflammation and risk of hospitalization for heart failure in patients with atrial fibrillation[J]. J Am Heart Assoc, 2021, 10(8): e019168. doi: 10.1161/JAHA.120.019168
    [8]
    KIM I C. Atrial fibrillation and heart failure with preserved ejection fraction[J]. Heart Fail Clin, 2021, 17(3): 377-386. doi: 10.1016/j.hfc.2021.03.001
    [9]
    VERHAERT D V M, BRUNNER-LA ROCCA H P, VAN VELDHUISEN D J, et al. The bidirectional interaction between atrial fibrillation and heart failure: consequences for the management of both diseases[J]. EP Eur, 2021, 23(Supplement_2): ii40-ii45.
    [10]
    MEZZAROMA E, ABBATE A, TOLDO S. The inflammasome in heart failure[J]. Curr Opin Physiol, 2021, 19: 105-112. doi: 10.1016/j.cophys.2020.09.013
    [11]
    HOU J, HUANG S J, LONG Y, et al. DACT2 regulates structural and electrical atrial remodeling in atrial fibrillation[J]. J Thorac Dis, 2020, 12(5): 2039-2048. doi: 10.21037/jtd-19-4206
    [12]
    QUAH J X, DHARMAPRANI D, TIVER K, et al. Atrial fibrosis and substrate based characterization in atrial fibrillation: time to move forwards[J]. J Cardiovasc Electrophysiol, 2021, 32(4): 1147-1160. doi: 10.1111/jce.14987
    [13]
    FENDER A C, DOBREV D. Heart failure with preserved ejection fraction meets atrial fibrillation: is enhanced inflammasome signaling a major common mechanism leading to these two frequent diseases[J]. Heart Rhythm, 2020, 17(6): 1034-1035. doi: 10.1016/j.hrthm.2020.02.032
    [14]
    WANG X L, CHEN X H, DOBREV D, et al. The crosstalk between cardiomyocyte calcium and inflammasome signaling pathways in atrial fibrillation[J]. Pflugers Arch, 2021, 473(3): 389-405. doi: 10.1007/s00424-021-02515-4
    [15]
    DE ALMEIDA A J P O, DE ALMEIDA REZENDE M S, DANTAS S H, et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases[J]. Oxid Med Cell Longev, 2020, 2020: 1954398.
    [16]
    NATTEL S, HEIJMAN J, ZHOU L P, et al. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective[J]. Circ Res, 2020, 127(1): 51-72. doi: 10.1161/CIRCRESAHA.120.316363
    [17]
    王居平, 杨维伦, 施乐. 中医药治疗慢性心力衰竭的药理机制与研究进展[J]. 实用临床医药杂志, 2020, 24(12): 125-128. doi: 10.7619/jcmp.202012035
    [18]
    DRIDI H, KUSHNIR A, ZALK R, et al. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target[J]. Nat Rev Cardiol, 2020, 17(11): 732-747. doi: 10.1038/s41569-020-0394-8
    [19]
    ISHIURA J, NAKAMORI S, ISHIDA M, et al. Targeting the cardiac myocyte and fibrosis' in heart failure[J]. Eur Heart J, 2022, 43(5): 432. doi: 10.1093/eurheartj/ehab780
    [20]
    PAGAN L U, GOMES M J, GATTO M, et al. The role of oxidative stress in the aging heart[J]. Antioxidants (Basel), 2022, 11(2): 336. doi: 10.3390/antiox11020336
    [21]
    CHEN K, WANG S, SUN Q W, et al. Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway[J]. Circ Res, 2021, 128(4): 492-507. doi: 10.1161/CIRCRESAHA.120.317348
    [22]
    HUNG Y, CHEN YC, HUANG SY, et al. Klotho modulates electrical activity and calcium homeostasis in pulmonary vein cardiomyocytes via PI3K/Akt signalling[J]. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 2020, 22(7): 1132-1141. doi: 10.1093/europace/euaa100
    [23]
    TYURENKOV I N, PERFILOVA V N, NESTEROVA A A, et al. Klotho protein and cardio-vascular system[J]. Biochemistry (Mosc), 2021, 86(2): 132-145. doi: 10.1134/S0006297921020024
    [24]
    LI-ZHEN L, CHEN Z C, WANG S S, et al. Klotho deficiency causes cardiac ageing by impairing autophagic and activating apoptotic activity[J]. Eur J Pharmacol, 2021, 911: 174559. doi: 10.1016/j.ejphar.2021.174559
    [25]
    RATTKA M, POTT A, KUHBERGER A, et al. Restoration of sinus rhythm by pulmonary vein is olation improves heart failure with preserved ejection fraction in atrial fibrillation patients[J]. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 2020, 22(9): 1328-1336. doi: 10.1093/europace/euaa101
    [26]
    SONG Y, SONG F, WU C, et al. The roles of epicardial adipose tissue in heart failure[J]. Heart Fail Rev, 2022, 27(1): 369-377. doi: 10.1007/s10741-020-09997-x
    [27]
    VYAS V, HUNTER RJ, LONGHI MP, et al. Inflammation and adiposity: new frontiers in atrial fibrillation[J]. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 2020, 22(11): 1609-1618. doi: 10.1093/europace/euaa214
    [28]
    ZHOU M M, WANG H, CHEN J D, et al. Epicardial adipose tissue and atrial fibrillation: possible mechanisms, potential therapies, and future directions[J]. Pacing Clin Electrophysiol, 2020, 43(1): 133-145. http://d.wanfangdata.com.cn/periodical/bf15c98fb3738cd4b0368123c6bb6ff6
    [29]
    TAYANLOO-BEIK A, ROUDSARI P P, REZAEI-TAVIRANI M, et al. Diabetes and heart failure: multi-omics approaches[J]. Front Physiol, 2021, 12: 705424. doi: 10.3389/fphys.2021.705424
    [30]
    YUBERO-SERRANO E M, PÉREZ-MARTÍNEZ P. Advanced glycation end products and their involvement in cardiovascular disease[J]. Angiology, 2020, 71(8): 698-700.
    [31]
    LI Z W, ZHAO H M, WANG J. Metabolism and chronic inflammation: the links between chronic heart failure and comorbidities[J]. Front Cardiovasc Med, 2021, 8: 650278.
    [32]
    KURA B, KALOCAYOVA B, DEVAUX Y, et al. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection[J]. Int J Mol Sci, 2020, 21(3): 700.
    [33]
    DAI B B, WANG F, NIE X, et al. The cell type-specific functions of miR-21 in cardiovascular diseases[J]. Front Genet, 2020, 11: 563166.
    [34]
    BABAPOOR-FARROKHRAN S, GILL D, RASEKHI R T. The role of long noncoding RNAs in atrial fibrillation[J]. Heart Rhythm, 2020, 17(6): 1043-1049.
    [35]
    GOMES C P C, SCHROEN B, KUSTER G M, et al. Regulatory RNAs in heart failure[J]. Circulation, 2020, 141(4): 313-328.
    [36]
    WANG Y, SUN X J, SUN X L. The functions of long non-coding RNA (lncRNA) H19 in the heart[J]. Heart Lung Circ, 2022, 31(3): 341-349.
    [37]
    SHEN J L, XIE X J. Insight into the pro-inflammatory and profibrotic role of macrophage in heart failure with preserved ejection fraction[J]. J Cardiovasc Pharmacol, 2020, 76(3): 276-285.
    [38]
    MIYOSAWA K, IWATA H, MINAMI-TAKANO A, et al. Enhanced monocyte migratory activity in the pathogenesis of structural remodeling in atrial fibrillation[J]. PLoS One, 2020, 15(10): e0240540.
    [39]
    杨帅涛, 廖杰, 杜以梅. 巨噬细胞在心室重塑中的作用[J]. 临床心血管病杂志, 2021, 37(4): 304-308. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202104004.htm
    [40]
    SEGERS V F M, DE KEULENAER G W. Autocrine signaling in cardiac remodeling: a rich source of therapeutic targets[J]. J Am Heart Assoc, 2021, 10(3): e019169.
    [41]
    PAN D F, ZHOU Y F, XIAO S J, et al. Identification of differentially expressed genes and pathways in human atrial fibrillation by bioinformatics analysis[J]. Int J Gen Med, 2022, 15: 103-114.
    [42]
    SUMAIYA K, LANGFORD D, NATARAJASEENIVASAN K, et al. Macrophage migration inhibitory factor (MIF): a multifaceted cytokine regulated by genetic and physiological strategies[J]. Pharmacol Ther, 2022, 233: 108024.
    [43]
    CHENG W L, KAO Y H, CHEN Y C, et al. Macrophage migration inhibitory factor increases atrial arrhythmogenesis through CD74 signaling[J]. Transl Res, 2020, 216: 43-56.
  • Cited by

    Periodical cited type(9)

    1. 冯倩,师淼,赵东坡,刘学英. 恩格列净联合沙库巴曲缬沙坦治疗心房颤动合并射血分数保留的心力衰竭效果观察. 临床误诊误治. 2024(11): 46-51+82 .
    2. 曹琴,刘炫,程森中,李阳. 超声触发胺碘酮缓释微针贴片的构建及用于心房颤动治疗的研究. 中国心血管病研究. 2024(08): 763-768 .
    3. 杨浩,禹雪,姚涵,迟润泽,单晓丽,李宾公. 血清白脂素与心房颤动的相关性研究. 实用临床医药杂志. 2024(15): 36-42 . 本站查看
    4. 王立利. 沙库巴曲缬沙坦联合不同剂量胺碘酮对慢性心力衰竭伴阵发性房颤患者的疗效分析. 中外医疗. 2024(36): 94-97 .
    5. 陈龙,林雷,沈炜,高文. 心衰合并房颤的老年患者1年内再住院风险因素分析及预测模型的建立. 老年医学与保健. 2023(03): 497-501 .
    6. 叶保勇,艾红波,叶保梅. 沙库巴曲缬沙坦联合阿托伐他汀治疗老年心力衰竭伴阵发性心房颤动的价值. 中国当代医药. 2023(30): 70-73 .
    7. 刘晓丽,刘韶华,张晓娟,王岩. 沙库巴曲缬沙坦对持续性房颤HFrEF患者冠脉血流储备的影响. 临床心电学杂志. 2023(05): 379-382 .
    8. 孙琳,杨立慧. 非瓣膜性心房颤动患者并发心力衰竭的影响因素分析. 中国实用医刊. 2023(24): 31-33 .
    9. 汤龙海,陈诗. 合并心房颤动对急诊充血性心力衰竭失代偿患者的影响. 中西医结合心血管病电子杂志. 2023(31): 96-99 .

    Other cited types(5)

Catalog

    Article views (247) PDF downloads (25) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return