YANG Xiangying, AN Ning, TAN Yao, CHEN Sheng, LIU Jingwen, ZHANG Fuyan, QIN Bo. Advances in N6-methyladenosine RNA methylation and ophthalmic diseases[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 139-144. DOI: 10.7619/jcmp.20220245
Citation: YANG Xiangying, AN Ning, TAN Yao, CHEN Sheng, LIU Jingwen, ZHANG Fuyan, QIN Bo. Advances in N6-methyladenosine RNA methylation and ophthalmic diseases[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 139-144. DOI: 10.7619/jcmp.20220245

Advances in N6-methyladenosine RNA methylation and ophthalmic diseases

More Information
  • Received Date: January 17, 2022
  • Available Online: June 09, 2022
  • N6-methyladenosine (m6A) refers to the methylation modification at the sixth nitrogen atom position of adenine nucleoside, and is the most common post-transcriptional modification in messenger RNA (mRNA) and long non-coding RNA (LncRNA). M6A modification is involved in various biological processes such as tissue development, stem cell self-renewal and differentiation, heat shock, DNA damage response, and transition of gene expression from maternal to zygotic transition period. M6A is an important post-transcriptional mRNA regulator in eukaryotic cells, and also plays a vital role in various diseases. M6A modifications in RNA interact with various types of proteins and influence several aspects of RNA biological processes, such as translation, degradation, transport, stability, and splicing. m6A RNA methylation plays an important role in common eye diseases suchas diabetic retinopathy and age-related macular degeneration and is involved in the regulation of antioxidant enzymes and scavenging of reactive oxygen species during oxidative stress.

  • [1]
    DX, SU R, WENG H, et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives[J]. Cell Res, 2018, 28(5): 507-517. doi: 10.1038/s41422-018-0034-6
    [2]
    CHEN X Y, ZHANG J, ZHU J S. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1): 103. doi: 10.1186/s12943-019-1033-z
    [3]
    RAUT S K, KHULLAR M. The big entity of new RNA world: long non-coding RNAs in microvascular complications of diabetes[J]. Front Endocrinol, 2018, 9: 300. doi: 10.3389/fendo.2018.00300
    [4]
    GAO J F, ZHANG L. The role of N6-methyladenosine (m6A) in eye diseases[J]. Mol Biol Rep, 2021, 48(8): 6145-6150. doi: 10.1007/s11033-021-06596-3
    [5]
    WANG Y, ZHANG G W, KANG L H, et al. Expression profiling of DNA methylation and transcriptional repression associated genes in lens epithelium cells of age-related cataract[J]. Cell Mol Neurobiol, 2017, 37(3): 537-543. doi: 10.1007/s10571-016-0393-9
    [6]
    FAN C X, LIU X M, LI W F, et al. Circular RNA circ KMT2E is up-regulated in diabetic cataract lenses and is associated with miR-204-5p sponge function[J]. Gene, 2019, 710: 170-177. doi: 10.1016/j.gene.2019.05.054
    [7]
    LI P, YU H, ZHANG G, et al. Identification and Characterization of N6-Methyladenosine CircRNAs and Methyltransferases in the Lens Epithelium Cells From Age-Related Cataract[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 13. doi: 10.1167/iovs.61.10.13
    [8]
    MA X Q, LONG C D, WANG F Y, et al. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via Wnt/β-catenin pathway[J]. J Cell Mol Med, 2021, 25(9): 4220-4234. doi: 10.1111/jcmm.16476
    [9]
    BARBER A J, BACCOUCHE B. Neurodegeneration in diabetic retinopathy: potential for novel therapies[J]. Vis Res, 2017, 139: 82-92. doi: 10.1016/j.visres.2017.06.014
    [10]
    YI Y C, CHEN X Y, ZHANG J, et al. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1): 121. doi: 10.1186/s12943-020-01233-2
    [11]
    KUMARI N, KARMAKAR A, GANESAN S K. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy[J]. J Cell Physiol, 2020, 235(3): 1933-1947. doi: 10.1002/jcp.29180
    [12]
    FORRESTER J V, KUFFOVA L, DELIBEGOVIC M. The role of inflammation in diabetic retinopathy[J]. Front Immunol, 2020, 11: 583687. doi: 10.3389/fimmu.2020.583687
    [13]
    LI H B, TONG J, ZHU S, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. doi: 10.1038/nature23450
    [14]
    WANG H M, HU X, HUANG M Y, et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J]. Nat Commun, 2019, 10(1): 1898. doi: 10.1038/s41467-019-09903-6
    [15]
    SUO L, LIU C, ZHANG Q Y, et al. METTL3-mediated N (6)-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication[J]. Theranostics, 2022, 12(1): 277-289. doi: 10.7150/thno.63441
    [16]
    ROMEO G, LIU W H, ASNAGHI V, et al. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes[J]. Diabetes, 2002, 51(7): 2241-2248. doi: 10.2337/diabetes.51.7.2241
    [17]
    YANG S, WEI J B, CUI Y H, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1): 2782. doi: 10.1038/s41467-019-10669-0
    [18]
    GIACCO F, BROWNLEE M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070. doi: 10.1161/CIRCRESAHA.110.223545
    [19]
    SHI Y, FAN S, WU M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression[J]. Nat Commun, 2019, 10(1): 4892. doi: 10.1038/s41467-019-12801-6
    [20]
    PROTTER D S W, PARKER R. Principles and properties of stress granules[J]. Trends Cell Biol, 2016, 26(9): 668-679. doi: 10.1016/j.tcb.2016.05.004
    [21]
    ANDERS M, CHELYSHEVA I, GOEBEL I, et al. Dynamic m6A methylation facilitates mRNA triaging to stress granules[J]. Life Sci Alliance, 2018, 1(4): e201800113. doi: 10.26508/lsa.201800113
    [22]
    WEN K, ZHANG Y, LI Y H, et al. Comprehensive analysis of transcriptome-wide m6A methylome in the anterior capsule of the lens of high myopia patients[J]. Epigenetics, 2021, 16(9): 955-968. doi: 10.1080/15592294.2020.1834917
    [23]
    ZHOU L X, SHAO L, XU L, et al. The relationship between scleral staphyloma and choroidal thinning in highly myopic eyes: the Beijing Eye Study[J]. Sci Rep, 2017, 7(1): 9825. doi: 10.1038/s41598-017-10660-z
    [24]
    LIU CH, WANG Z, SUN Y, et al. Animal models of ocular angiogenesis: from development to pathologies[J]. FASEB J, 2017, 31(11): 4665-4681. doi: 10.1096/fj.201700336R
    [25]
    SHAN K, ZHOU R M, XIANG J, et al. FTO regulates ocular angiogenesis via m(6)A-YTHDF2-dependent mechanism[J]. Exp Eye Res, 2020, 197: 108107. doi: 10.1016/j.exer.2020.108107
    [26]
    WANG L J, XUE Y M, LI H, et al. Wilms'tumour 1-associating protein inhibits endothelial cell angiogenesis by m6A-dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation[J]. J Cell Mol Med, 2020, 24(9): 4981-4991. doi: 10.1111/jcmm.15101
    [27]
    PANNEERDOSS S, EEDUNURI V K, YADAV P, et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression[J]. Sci Adv, 2018, 4(10): eaar8263. doi: 10.1126/sciadv.aar8263
    [28]
    曲笑霖. 创伤性视神经损伤早期视网膜组织m6A修饰差异性表达及功能分析的研究[D]. 上海: 中国人民解放军海军军医大学, 2020.
    [29]
    XU S, LI Y, CHEN J P, et al. Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation[J]. Cell Death Dis, 2020, 11(9): 816. doi: 10.1038/s41419-020-03021-8
    [30]
    WENG Y L, WANG X, AN R, et al. Epitranscriptomic m(6) A Regulation of Axon Regeneration in the Adult Mammalian Nervous System[J]. Neuron, 2018, 97(2): 313-325. doi: 10.1016/j.neuron.2017.12.036
    [31]
    JIA R, CHAI P, WANG S, et al. m(6)A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J]. Mol Cancer, 2019, 18(1): 161. doi: 10.1186/s12943-019-1088-x
    [32]
    LUO G Y, XU W W, ZHAO Y P, et al. RNA m6 A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met[J]. J Cell Physiol, 2020, 235(10): 7107-7119. doi: 10.1002/jcp.29608
    [33]
    HAO L L, YIN J Y, YANG H, et al. ALKBH5-mediated m6A demethylation of FOXM1 mRNA promotes progression of uveal melanoma[J]. Aging, 2021, 13(3): 4045-4062. doi: 10.18632/aging.202371
    [34]
    SONG H B, LIU D C, WANG L W, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma[J]. Molecular Cancer, 2022, 21(1): 43. doi: 10.1186/s12943-022-01519-7
  • Cited by

    Periodical cited type(1)

    1. 郭秀兰,杨燕琼,侯雅真,石洁,陈琛. NRS2002与MUST结合评估辅助个体化营养支持对淋巴瘤化疗患者营养状态与并发症的影响. 中外医学研究. 2024(24): 91-94 .

    Other cited types(0)

Catalog

    Article views (233) PDF downloads (16) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return