Citation: | LI Juanjuan, LIU Min, YANG Bin, DU Wei, YANG Hongkai, LIAO Yanquan, LI Junhang, WANG Jun. Application of artificial intelligence-assisted pulmonary nodule screening and qualitative diagnosis[J]. Journal of Clinical Medicine in Practice, 2022, 26(8): 8-12. DOI: 10.7619/jcmp.20214698 |
[1] |
CHRISTIE J R, LANG P, ZELKO L M, et al. Artificial intelligence in lung cancer: bridging the gap between computational power and clinical decision-making[J]. Can Assoc Radiol J, 2021, 72(1): 86-97. doi: 10.1177/0846537120941434
|
[2] |
TANDON Y K, BARTHOLMAI B J, KOO C W. Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules[J]. J Thorac Dis, 2020, 12(11): 6954-6965. doi: 10.21037/jtd-2019-cptn-03
|
[3] |
JOY MATHEW C, DAVID A M, JOY MATHEW C M. Artificial Intelligence and its future potential in lung cancer screening[J]. Excli J, 2020, 19: 1552-1562.
|
[4] |
MOLDOVANU D, DE KONING H J, VAN DER AALST C M. Lung cancer screening and smoking cessation efforts[J]. Transl Lung Cancer Res, 2021, 10(2): 1099-1109. doi: 10.21037/tlcr-20-899
|
[5] |
MESA- GUZMÁN M, GONZÁLEZ J, ALCAIDE A B, et al. Surgical outcomes in a lung cancer-screening program using low dose computed tomography[J]. Arch Bronconeumol, 2021, 57(2): 101-106. doi: 10.1016/j.arbres.2020.03.026
|
[6] |
SATHYAKUMAR K, MUNOZ M, SINGH J, et al. Automated lung cancer detection using artificial intelligence (AI) deep convolutional neural networks: a narrative literature review[J]. Cureus, 2020, 12(8): e10017.
|
[7] |
OUDKERK M, LIU S Y, HEUVELMANS M A, et al. Lung cancer LDCT screening and mortality reduction-evidence, pitfalls and future perspectives[J]. Nat Rev Clin Oncol, 2021, 18(3): 135-151. doi: 10.1038/s41571-020-00432-6
|
[8] |
PINSKY P. Artificial intelligence and data mining to assess lung cancer risk: challenges and opportunities[J]. Ann Intern Med, 2020, 173(9): 760-761. doi: 10.7326/M20-5673
|
[9] |
ATHER S, KADIR T, GLEESON F. Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications[J]. Clin Radiol, 2020, 75(1): 13-19. doi: 10.1016/j.crad.2019.04.017
|
[10] |
戴正行, 胡春洪, 王希明, 等. 基于DenseNet网络深度学习法CT图像人工智能分析技术判断肺结节良恶性[J]. 放射学实践, 2020, 35(4): 484-488. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202004020.htm
|
[11] |
BINCZYK F, PRAZUCH W, BOZEK P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199. doi: 10.21037/tlcr-20-708
|
[12] |
王亮, 许迪, 孙丹丹, 等. 人工智能辅助软件可提升疲劳状态下放射科规培医师对肺结节的检测效能[J]. 放射学实践, 2021, 36(4): 475-479. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202104017.htm
|
[13] |
彭志强, 郭静波, 邓晓, 等. 人工智能在肺小结节诊断中的临床研究与应用[J]. 中国医学装备, 2021, 18(9): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZB202109011.htm
|
[14] |
李欣菱, 郭芳芳, 周振, 等. 基于深度学习的人工智能胸部CT肺结节检测效能评估[J]. 中国肺癌杂志, 2019, 22(6): 336-340. https://www.cnki.com.cn/Article/CJFDTOTAL-FAIZ201906002.htm
|
[15] |
PRAYER F, RÖHRICH S, PAN J, et al. Künstliche Intelligenz in der Bildgebung der Lunge[Artificial intelligence in lung imaging][J]. Radiologe, 2020, 60(1): 42-47. doi: 10.1007/s00117-019-00611-2
|
[16] |
蔡雅倩, 张正华, 韩丹, 等. AI对肺磨玻璃结节筛查及定性的临床应用研究[J]. 放射学实践, 2019, 34(9): 958-962. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201909008.htm
|
[17] |
赵呈华. 人工智能辅助诊断系统联合CT检查肺结节的诊断价值[J]. 实用临床医药杂志, 2020, 24(19): 9-11. doi: 10.7619/jcmp.202019003
|