GAO Li, LI Xiaoming, YANG Bo, QIN Ying, CHENG Dong, ZHENG Lifei, LI Li. Long non-coding RNA CBR3-AS1 mediates the mechanism of cytarabine resistance in leukemia cells through the PI3K/AKT/mTOR/S6K pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(8): 66-70, 75. DOI: 10.7619/jcmp.20214581
Citation: GAO Li, LI Xiaoming, YANG Bo, QIN Ying, CHENG Dong, ZHENG Lifei, LI Li. Long non-coding RNA CBR3-AS1 mediates the mechanism of cytarabine resistance in leukemia cells through the PI3K/AKT/mTOR/S6K pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(8): 66-70, 75. DOI: 10.7619/jcmp.20214581

Long non-coding RNA CBR3-AS1 mediates the mechanism of cytarabine resistance in leukemia cells through the PI3K/AKT/mTOR/S6K pathway

More Information
  • Received Date: November 21, 2021
  • Available Online: April 27, 2022
  • Objective 

    To investigate the possible mechanism of long non-coding RNA (lncRNA) CBR3-AS1 mediating cytarabine resistance in acute myeloid leukemia (AML) cells through PI3K/AKT/mTOR/S6K pathway.

    Methods 

    Drug resistance models were established in two AML cell strains K562 and HL-60, named as K562-R and HL-60-R, respectively. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA CBR3-AS1 in K562-R and HL-60-R. LncRNA CBR3-AS1 was overexpressed by plasmids in the K562 and HL-60 cell strains; lncRNA CBR3-AS1 expression was knocked down by siRNA in K562-R and HL-60-R cell strains, and the 50% inhibitory concentration (IC50) of cytarabine was calculated. K562-R and HL-60-R cell lines, siRNA was used to knock down the expression of lncRNA CBR3-AS1. Western blot was used to detect the activation of PI3K/AKT/mTOR/S6K pathway.

    Results 

    Compared with K562 and HL-60 cell strains, the expressions of lncRNA CBR3-AS1 in K562-R and HL-60-R cell strains were significantly increased (P < 0.05). Overexpression of lncRNA CBR3-AS1 increased the IC50 of cytarabine to over 1 000 μmol/L (P < 0.05). After knock down lncRNA CBR3-AS1, the IC50 of cytarabine in drug-resistant cell strains K562-R and HL-60-R were significantly reduced to 21.27 μmol/L and 12.10 μmol/L (P < 0.05), respectively. Overexpression of lncRNA CBR3-AS1 significantly increased the phosphorylation levels of PI3K, AKT, mammalian target of rapamycin (mTOR) and S6K proteins (P < 0.05). Knockdown lncRNA CBR3-AS1 significantly reduced the phosphorylation levels of PI3K, AKT, mTOR and S6K proteins (P < 0.05).

    Conclusion 

    LncRNA CBR3-AS1 may mediate the resistance of AML cells to cytarabine by activating the PI3K/AKT/mTOR/S6K pathway.

  • [1]
    ESTEY E H. Acute myeloid leukemia: 2019 update on risk-stratification and management[J]. Am J Hematol, 2018, 93(10): 1267-1291. doi: 10.1002/ajh.25214
    [2]
    LANCET J E, UY G L, CORTES J E, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia[J]. J Clin Oncol, 2018, 36(26): 2684-2692. doi: 10.1200/JCO.2017.77.6112
    [3]
    STIEF S M, HANNEFORTH A L, WESER S, et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia[J]. Leukemia, 2020, 34(1): 50-62. doi: 10.1038/s41375-019-0497-6
    [4]
    AROUA N, BOET E, GHISI M, et al. Extracellular ATP and CD39 activate cAMP-mediated mitochondrial stress response to promote cytarabine resistance in acute myeloid leukemia[J]. Cancer Discov, 2020, 10(10): 1544-1565. doi: 10.1158/2159-8290.CD-19-1008
    [5]
    DONG X M, XU X, GUAN Y P. LncRNA LINC00899 promotes progression of acute myeloid leukaemia by modulating miR-744-3p/YY1 signalling[J]. Cell Biochem Funct, 2020, 38(7): 955-964. doi: 10.1002/cbf.3521
    [6]
    MVLLER V, OLIVEIRA-FERRER L, STEINBACH B, et al. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer[J]. Mol Oncol, 2019, 13(5): 1137-1149. doi: 10.1002/1878-0261.12472
    [7]
    熊雄, 焉正庆, 张爱军. 长链非编码RNA CBR3-AS1在乳腺癌中的表达及其功能[J]. 中国普通外科杂志, 2019, 28(11): 1374-1380. doi: 10.7659/j.issn.1005-6947.2019.11.009
    [8]
    黄杰, 胡华, 蒋林. 长链非编码RNA CBR3-AS1在骨肉瘤中的表达及意义[J]. 南京医科大学学报: 自然科学版, 2020, 40(1): 56-61, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202001011.htm
    [9]
    WANG C, LI L L, LI M Y, et al. Silencing long non-coding RNA XIST suppresses drug resistance in acute myeloid leukemia through down-regulation of MYC by elevating microRNA-29a expression[J]. Mol Med, 2020, 26(1): 114. doi: 10.1186/s10020-020-00229-4
    [10]
    ZHANG H, LIU L, CHEN L L, et al. Long noncoding RNA DANCR confers cytarabine resistance in acute myeloid leukemia by activating autophagy via the miR-874-3P/ATG16L1 axis[J]. Mol Oncol, 2021, 15(4): 1203-1216. doi: 10.1002/1878-0261.12661
    [11]
    ZHANG M, WANG Y, JIANG L Y, et al. LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 41. doi: 10.1186/s13046-021-01844-7
    [12]
    刘亮, 刘洪涛, 李医明. lncRNA CBR3-AS1靶向调控miR-5195-3p促进胃癌细胞增殖、迁移及侵袭[J]. 胃肠病学和肝病学杂志, 2021, 30(6): 612-616. doi: 10.3969/j.issn.1006-5709.2021.06.003
    [13]
    吕波, 朱新锋, 蔡常春, 等. 长链非编码RNA CBR3-AS1在胆管癌中的表达及其临床意义[J]. 中国普通外科杂志, 2019, 28(8): 960-966. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPWZ201908009.htm
    [14]
    徐瑞, 李丽娜, 王文娟. Hippo信号通路介导PTEN调节PI3K/AKT/mTOR信号通路影响肝癌细胞增殖能力[J]. 山西医科大学学报, 2020, 51(12): 1277-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYX202012001.htm
    [15]
    粟燕云, 吴梅青, 刘振芳, 等. 紫杉醇对FLT3-ITD突变阳性急性髓系白血病细胞株MOLM-13增殖与凋亡的影响[J]. 广西医科大学学报, 2021, 38(4): 699-703. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYD202104013.htm
    [16]
    TORKASHVAND S, BASI, AJDARKOSH H, et al. Long non-coding RNAs expression in breast cancer: CBR3-AS1 LncRNA as a sensitive biomarker[J]. Asian Pac J Cancer Prev, 2021, 22(9): 2897-2902. doi: 10.31557/APJCP.2021.22.9.2897
    [17]
    GUAN Y, YANG J, LIU X M, et al. Long noncoding RNA CBR3 antisense RNA 1 promotes the aggressive phenotypes of non small cell lung cancer by sponging microRNA 509 3p and competitively upregulating HDAC9 expression[J]. Oncol Rep, 2020, 44(4): 1403-1414.
  • Cited by

    Periodical cited type(16)

    1. 曹瑛. 膝关节置换术患者康复中阶段性护理策略的效果评估与分析. 现代养生. 2025(02): 144-147 .
    2. 徐立伟,刘辉,何兵. MOTOmed智能运动训练系统联合PNF技术在全膝关节置换患者中的应用. 中国疗养医学. 2024(01): 50-53 .
    3. 刘红,包娟,卢苇,马瑞,张敏. 视觉反馈平衡训练对脑卒中后平衡与步态康复的研究进展. 中国医药导报. 2024(02): 66-69 .
    4. 杨晓娇,王骏,刘柯文. 等速肌力训练结合Pro-kin平衡系统用于膝关节前交叉韧带重建术后的临床观察. 中国现代医学杂志. 2024(07): 21-26 .
    5. 董晓利,牛婷婷,郑慧玲,徐慧萍. 多学科协作制定的行走站立平衡运动康复护理模式在膝关节置换病人中的应用. 全科护理. 2024(12): 2289-2292 .
    6. 牛慧敏,连继芳. 视觉反馈训练联合早期部分负重训练在胫骨平台骨折内固定术后患者中的应用效果. 反射疗法与康复医学. 2024(06): 188-190+194 .
    7. 崔丽红,张世松,赵秀泉,于国胜,张立文. 临床管理路径对人工膝关节置换术后患者生活质量、膝关节功能及康复锻炼依从性的影响. 河北医药. 2024(16): 2557-2560 .
    8. 翁志超,李俊洁,王振军. 视觉反馈下本体感觉训练应用于全膝关节置换术后患者的效果. 国际移植与血液净化杂志. 2024(05): 33-34 .
    9. 郭一桦,油胜男. 渐进性下肢康复疗法联合家庭式平衡锻炼对股骨颈骨折术后患者关节功能恢复的影响. 反射疗法与康复医学. 2024(13): 67-70 .
    10. 张琴,李晓娅,涂华莉. 平衡训练在髋膝关节置换患者康复中的应用研究进展. 医学新知. 2024(12): 1424-1429 .
    11. 陈蓉蓉. 阶段性康复训练对全膝关节置换术患者疼痛程度及关节活动度的影响. 中外医学研究. 2024(36): 102-105 .
    12. 陈瑶,陈彦霞,叶伟伟. 动静平衡理念训练对全膝关节置换患者的影响. 国际移植与血液净化杂志. 2024(06): 37-38 .
    13. 王丽琼,胡丹蓉. 运动训练及其他康复治疗技术在膝关节置换术中的研究进展. 运动与健康. 2024(12): 17-20 .
    14. 王琴,黎华茂,黄萍,张芳. 平衡测试及训练系统联合全身振动系统对半月板关节镜修复术后康复疗效、预后影响. 临床军医杂志. 2023(07): 734-736 .
    15. 田慧,张俊娟,杨飒,李静. 奥塔戈运动联合平衡协调强化训练对老年股骨颈骨折髋关节置换术患者平衡功能的影响. 临床医学. 2023(08): 62-64 .
    16. 张红敏,高晶,王丽娜. 虚拟现实技术结合常规康复治疗对痉挛型脑性瘫痪患儿下肢运动功能的影响. 中国现代医学杂志. 2023(23): 42-46 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return