Citation: | RONG Fang, WU Feng, ZHOU Jun. Research progress on resistance mechanism of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 134-138. DOI: 10.7619/jcmp.20214525 |
[1] |
SQUIRES K M, NGUYEN M H, SHIELDS R K, et al. Sequence type-258 carbapenem-resistant Klebsiella pneumoniae isolates in which ceftazidime-avibactam resistance emerged are not hypermutators[J]. Diagn Microbiol Infect Dis, 2020, 96(3): 114954. doi: 10.1016/j.diagmicrobio.2019.114954
|
[2] |
SHAMINA O V, KRYZHANOVSKAYA O A, LAZAREVA A V, et al. Emergence of a ST307 clone carrying a novel insertion element MITEKpn1 in the mgrB gene among carbapenem-resistant Klebsiella pneumoniae from Moscow, Russia[J]. Int J Antimicrob Agents, 2020, 55(2): 105850. doi: 10.1016/j.ijantimicag.2019.11.007
|
[3] |
梁武华, 梁敏煜, 周海燕, 等. 耐碳青霉烯类肺炎克雷伯菌耐药监测及分子耐药机制的研究进展[J]. 当代医学, 2021, 27(19): 191-194. doi: 10.3969/j.issn.1009-4393.2021.19.079
|
[4] |
陈艳慧, 胡龙华, 钟桥石, 等. 肺炎克雷伯菌临床分布特征及耐药性变迁[J]. 实验与检验医学, 2018, 36(3): 326-329. doi: 10.3969/j.issn.1674-1129.2018.03.010
|
[5] |
HU Y M, PING Y T, LI L Q, et al. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients[J]. J Infect Dev Ctries, 2016, 10(3): 208-213. doi: 10.3855/jidc.6697
|
[6] |
RAHIM G R, GUPTA N, MAHESHWARI P, et al. Monomicrobial Klebsiella pneumoniae necrotizing fasciitis: an emerging life-threatening entity[J]. Clin Microbiol Infect, 2019, 25(3): 316-323. doi: 10.1016/j.cmi.2018.05.008
|
[7] |
毛昳涵. 碳青霉烯耐药肺炎克雷伯菌院内流行及替加环素耐药机制研究[D]. 杭州: 浙江大学, 2019.
|
[8] |
REYES J, AGUILAR A C, CAICEDO A. Carbapenem-resistant Klebsiella pneumoniae: microbiology key points for clinical practice[J]. Int J Gen Med, 2019, 12: 437-446. doi: 10.2147/IJGM.S214305
|
[9] |
AGYEMAN A A, BERGEN P J, RAO G G, et al. A systematic review and meta-analysis of treatment outcomes following antibiotic therapy among patients with carbapenem-resistant Klebsiella pneumoniae infections[J]. Int J Antimicrob Agents, 2020, 55(1): 105833. doi: 10.1016/j.ijantimicag.2019.10.014
|
[10] |
CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae[J]. MMWR Morb Mortal Wkly Rep, 2013, 62(9): 165-170.
|
[11] |
胡付品, 郭燕, 朱德妹, 等. 2020年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2021, 21(4): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-KGHL202104001.htm
|
[12] |
张娣. 一株泛耐药肺炎克雷伯菌耐药机制研究[D]. 杭州: 浙江大学, 2020.
|
[13] |
DOAN T L, FUNG H B, MEHTA D, et al. Tigecycline: a glycylcycline antimicrobial agent[J]. Clin Ther, 2006, 28(8): 1079-1106. doi: 10.1016/j.clinthera.2006.08.011
|
[14] |
郭咸希, 何文, 陈莹, 等. 我院住院患者耐碳青霉烯肺炎克雷伯菌感染的回顾性分析[J]. 中国药师, 2021, 24(2): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSG202102023.htm
|
[15] |
FRITZENWANKER M, IMIRZALIOGLU C, HEROLD S, et al. Treatment options for carbapenem- resistant gram-negative infections[J]. Dtsch Arztebl Int, 2018, 115(20/21): 345-352.
|
[16] |
PAPADIMITRIOU-OLIVGERIS M, BARTZAVALI C, NIKOLOPOULOU A, et al. Impact of tigecycline's MIC in the outcome of critically ill patients with carbapenemase-producing Klebsiella pneumoniae bacteraemia treated with tigecycline monotherapy-validation of 2019's EUCAST proposed breakpoint changes[J]. Antibiotics (Basel), 2020, 9(11): E828. doi: 10.3390/antibiotics9110828
|
[17] |
HACKEL M, KAZMIERCZAK K M, HOBAN D J, et al. Assessment of the in vitro activity of ceftazidime-avibactam against multidrug-resistant Klebsiella spp. collected in the INFORM global surveillance study, 2012 to 2014[J]. Antimicrob Agents Chemother, 2016, 60(8): 4677-4683.
|
[18] |
KHURSHID M, RASHID A, HUSNAIN M, et al. In-vitro assessment of the therapeutic potential of polymyxins and tigecycline against multidrugresistant Acinetobacter isolates from infected wounds[J]. J Ayub Med Coll Abbottabad, 2020, 32(4): 459-464.
|
[19] |
GRIMSEY E M, WESTON N, RICCI V, et al. Overexpression of RamA, which regulates production of the multidrug resistance efflux pump AcrAB-TolC, increases mutation rate and influences drug resistance phenotype[J]. Antimicrob Agents Chemother, 2020, 64(4): e02460-e02419.
|
[20] |
SUBHADRA B, KIM J, KIM D H, et al. Local repressor AcrR regulates AcrAB efflux pump required for biofilm formation and virulence in Acinetobacter nosocomialis[J]. Front Cell Infect Microbiol, 2018, 8: 270. doi: 10.3389/fcimb.2018.00270
|
[21] |
张娣, 周志慧. 碳青霉烯耐药肺炎克雷伯菌对替加环素的耐药机制研究进展[J]. 世界最新医学信息文摘: 连续型电子期刊, 2020, 20(24): 47-49, 54. doi: 10.3969/j.issn.1671-3141.2020.24.020
|
[22] |
LI J, ZHANG H Y, NING J N, et al. The nature and epidemiology of OqxAB, a multidrug efflux pump[J]. Antimicrob Resist Infect Control, 2019, 8: 44. doi: 10.1186/s13756-019-0489-3
|
[23] |
NIELSEN L E, SNESRUD E C, ONMUS-LEONE F, et al. IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2014, 58(10): 6151-6156. doi: 10.1128/AAC.03053-14
|
[24] |
JUAN C H, HUANG Y W, LIN Y T, et al. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia[J]. Antimicrob Agents Chemother, 2016, 60(12): 7357-7363. doi: 10.1128/AAC.01503-16
|
[25] |
AKIYAMA T, PRESEDO J, KHAN A A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates[J]. Int J Antimicrob Agents, 2013, 42(2): 133-140. doi: 10.1016/j.ijantimicag.2013.04.017
|
[26] |
LINKEVICIUS M, SANDEGREN L, ANDERSSON D I. Potential of tetracycline resistance proteins to evolve tigecycline resistance[J]. Antimicrob Agents Chemother, 2016, 60(2): 789-796. doi: 10.1128/AAC.02465-15
|
[27] |
FOONG W E, WILHELM J, TAM H K, et al. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with RND-type efflux transporters[J]. J Antimicrob Chemother, 2020, 75(5): 1135-1139. doi: 10.1093/jac/dkaa015
|
[28] |
赖宁燕, 虞亦鸣, 邓在春. 碳青霉烯类耐药肺炎克雷伯杆菌耐药机制及治疗策略研究进展[J]. 中国现代医生, 2019, 57(36): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS201936042.htm
|
[29] |
BENDER J K, KLARE I, FLEIGE C, et al. A nosocomial cluster of tigecycline- and vancomycin-resistant Enterococcus faecium isolates and the impact of rpsJ and tet(M) mutations on tigecycline resistance[J]. Microb Drug Resist, 2020, 26(6): 576-582. doi: 10.1089/mdr.2019.0346
|
[30] |
BEABOUT K, HAMMERSTROM T G, PEREZ A M, et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility[J]. Antimicrob Agents Chemother, 2015, 59(9): 5561-5566. doi: 10.1128/AAC.00547-15
|
[31] |
HE F, SHI Q C, FU Y, et al. Tigecycline resistance caused by rpsJ evolution in a 59-year-old male patient infected with KPC-producing Klebsiella pneumoniae during tigecycline treatment[J]. Infect Genet Evol, 2018, 66: 188-191. doi: 10.1016/j.meegid.2018.09.025
|
[32] |
朱瑞奇, 吴韩, 曾杨梅, 等. 肠杆菌科细菌替加环素耐药机制的研究进展[J]. 江西畜牧兽医杂志, 2020(5): 7-12. doi: 10.3969/j.issn.1004-2342.2020.05.003
|
[33] |
LU B, JIANG Y J, MAN M Q, et al. Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis[J]. J Lipid Res, 2005, 46(11): 2448-2457. doi: 10.1194/jlr.M500258-JLR200
|
[34] |
LI X, LIU L, JI J, et al. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(3): 625-631. doi: 10.1007/s10096-014-2272-y
|
[35] |
HUANG Y H, CHOU S H, LIANG S W, et al. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan[J]. J Antimicrob Chemother, 2018, 73(8): 2039-2046. doi: 10.1093/jac/dky164
|
1. |
吴春蕾,杨盼,徐敏,李瑛,王跃涛. 心电图P波离散度及Ⅱ导联P波峰值时间对原发性高血压患者新发心房颤动的预测价值. 实用临床医药杂志. 2024(22): 21-25 .
![]() |