ZHANG Qi, WANG Zhiqiang, CAI Huarong, JIANG Yuequan. Role of protein arginine methyltransferase 5 in methylthioadenosine phosphorylase deficient malignant pleural mesothelioma[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 82-87. DOI: 10.7619/jcmp.20212725
Citation: ZHANG Qi, WANG Zhiqiang, CAI Huarong, JIANG Yuequan. Role of protein arginine methyltransferase 5 in methylthioadenosine phosphorylase deficient malignant pleural mesothelioma[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 82-87. DOI: 10.7619/jcmp.20212725

Role of protein arginine methyltransferase 5 in methylthioadenosine phosphorylase deficient malignant pleural mesothelioma

More Information
  • Received Date: July 05, 2021
  • Available Online: September 03, 2021
  • Published Date: September 14, 2021
  •   Objective  To explore the combined killing effect of inhibiting the expression of protein arginine methyltransferase 5 (PRMT5) gene on methylthioadenosine phosphorylase (MTAP) deficient malignant pleural mesothelioma (MPM) cells.
      Methods  MPM cells were divided into MTAP positive group (REN, H28 and MPP89) and MTAP deficient group (H2591, 2452 and H2052), and the Hap-1 MTAP KO/WT were used as controls. PRMT5 siRNA and quinacrine (0, 0.5 and 1.0 μmol/L) were used to treat cells in two groups, and the expression levels of PRMT5 protein and H4R3me2s methylated protein were detected by Western blot after 72 hours. The ability of cell clone and proliferation was determined by crystal violet staining.
      Results  PRMT5 siRNA was able to downregulate the PRMT5 protein levels of MTAP positive cell lines and MTAP deficient cell lines, resulting in a significant decrease in the H4R3me2s methylation level of MTAP deficient MPM cells, but had no significant inhibitory effects on the H4R3me2s methylation level of MTAP positive cells. PRMT5 siRNA was able to inhibit the clonal and proliferation ability of MTAP deficient cells, but had no significant inhibitory effect on the cloning of MTAP positive cells (P=0.023, n=3). Quinacrine was able to downregulate the expression level of PRMT5 protein in MTAP deficient cell lines (H2591 and H2052), reduce the methylation level of H4R3me2s and the ability of cell clone and proliferation, but had no down-regulation effect on PRMT5 and H4R3me2s in MTAP positive cell lines (MPP89)and no inhibitory effect on cell proliferation, and there were significant differences (P=0.018, n=3).
      Conclusion  Inhibition of PMRT5 can kill MTAP deficient MPM in combination, and quinacrine can produce combined killing effect on some MTAP deficient MPM.
  • [1]
    GUO Z, CARBONE M, ZHANG X, et al. Improving the Accuracy of Mesothelioma Diagnosis in China[J]. J Thorac Oncol, 2017, 12(4): 714-723. doi: 10.1016/j.jtho.2016.12.006
    [2]
    HE J, CHEN W Q. Chinese Cancer Registry Annual Report[M]. Beijing: Military Medical Science Press, 2012: 11-13.
    [3]
    SCHERPEREEL A, ASTOUL P, BAAS P, et al. European Respiratory Society/European Society of Thoracic Surgeons Task Force. Guidelines of the European Respiratory Society and the European Society of Thoracic Surgeons for the management of malignant pleural mesothelioma[J]. Eur Respir J, 2010, 35(3): 479-495. doi: 10.1183/09031936.00063109
    [4]
    KATYA M, MICHAEL J, CAMERON, et al. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis[J]. Cell Reports, 2016, 15(3): 574-587. doi: 10.1016/j.celrep.2016.03.043
    [5]
    BEDFORD M T. Arginine methylation at a glance[J]. J Cell Sci, 2007, 120(Pt24): 4243-4246. http://europepmc.org/abstract/med/18057026
    [6]
    KARKHANIS V, HU Y J, BAIOCCHI R A, et al. Versatility of PRMT5-induced methylation in growth control and development[J]. Trends Biochem Sci, 2011, 36: 633-641. doi: 10.1016/j.tibs.2011.09.001
    [7]
    WANG L, PAL S, SIF S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells[J]. Mol Cell Biol, 2008, 28(20): 6262-6277. doi: 10.1128/MCB.00923-08
    [8]
    PAL S, BAIOCCHI R A, BYRD J C, et al. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma[J]. EMBO J, 2007, 26(15): 3558-3569. doi: 10.1038/sj.emboj.7601794
    [9]
    GU Z, GAO S, ZHANG F, et al. Protein arginine methyltransferase 5 is essential for growth of lung cancer cells[J]. Biochem J, 2012, 446(2): 235-241. doi: 10.1042/BJ20120768
    [10]
    ECKERT D, BIERMANN K, NETTERSHEIM D, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors[J]. BMC Dev Biol, 2008, 8: 106. doi: 10.1186/1471-213X-8-106
    [11]
    BAO X, ZHAO S, LIU T, et al. Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer[J]. J Histochem Cytochem, 2013, 61(3): 206-217. doi: 10.1369/0022155413475452
    [12]
    NICHOLAS C, YANG J, PETERS S B, et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1. ) [J]. PLoS One, 2013, 8(9): e74710. doi: 10.1371/journal.pone.0074710
    [13]
    KIM J M, SOHN H Y, YOON S Y, et al. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells[J]. Clin Cancer Res, 2005, 11(2 Pt 1): 473-482. http://europepmc.org/abstract/MED/15701830
    [14]
    WEI T Y, JUAN C C, HISA J Y, et al. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade[J]. Cancer Sci, 2012, 103(9): 1640-1650. doi: 10.1111/j.1349-7006.2012.02367.x
    [15]
    UZDENSKY A, DEMYANENKO S, BIBOV M, et al. Expression of proteins involved in epigenetic regulation in human cutaneous melanoma and peritumoral skin[J]. Tumour Biol, 2014, 35(8): 8225-8233. doi: 10.1007/s13277-014-2098-3
    [16]
    HAN X, LI R, ZHANG W, et al. Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro[J]. J Neurooncol, 2014, 118(1): 61-72. doi: 10.1007/s11060-014-1419-0
    [17]
    何伶靖, 邹成, 贺琴菊, 等. PRMT5在癌症中的研究进展[J]. 中国细胞生物学学报, 2021, 43(3): 662-674. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ202103022.htm
    [18]
    ZHANG T, GUNTHER S, LOOSO M, et al. PRMT5 is a regulator of muscle stem cell expansion in adult mice[J]. Nat Commun, 2015, 6: 7140. doi: 10.1038/ncomms8140
    [19]
    SU C Y, CHANG Y C, CHAN Y C, et al. MTAP is an independent prognosis marker and the concordant loss of MTAP and p16 expression predicts short survival in non-small cell lung cancer patients[J]. Eur J Surg Oncol, 2014, 40(9): 1143-1150. doi: 10.1016/j.ejso.2014.04.017
    [20]
    M′SOKA T J, NISHIOKA J, TAGA A, et al. Detection of methylthioadenosine phosphorylase (MTAP) and p16 gene deletion in T cell acute lymphoblastic leukemia by real-time quantitative PCR assay[J]. Leukemia, 2000, 14(5): 935-940. doi: 10.1038/sj.leu.2401771
    [21]
    WATANABE F, TAKAO M, INOUE K, et al. Immunohistochemical diagnosis of methylthioadenosine phosphorylase (MTAP) deficiency in non-small cell lung carcinoma[J]. Lung Cancer, 2009, 63(1): 39-44. doi: 10.1016/j.lungcan.2008.04.019
    [22]
    SHARKEY A, MARTINSON L, QUESNE J L, et al. Inhibition of PRMT5 is Synthetic Lethal in Mesotheliomas Harboring MTAP Loss[J]. Journal of Thoracic Oncology, 2017, P3. 003-005. http://www.researchgate.net/publication/312415388_P303-005_Inhibition_of_PRMT5_is_Synthetic_Lethal_in_Mesotheliomas_Harboring_MTAP_Loss/download
    [23]
    MAVRAKIS K J, MCDONALD E R, SCHLABACH M R. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5[J]. Science, 2016, 351(6278): 1208-1213. doi: 10.1126/science.aad5944
    [24]
    KRYUKOV G V, WILSON F H, RUTH J R, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells[J]. Science, 2016, 351(6278): 1214-1218. doi: 10.1126/science.aad5214
    [25]
    MULLER F L, COLLA S, AQUILANTI E, et al. Passenger deletions generate therapeutic vulnerabilities in cancer[J]. Nature, 2012, 488(7411): 337-342. doi: 10.1038/nature11331
    [26]
    ZHAO Q, RANK G, TAN Y, et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing[J]. Nat Struct Mol Biol, 2009, 16: 304-311. doi: 10.1038/nsmb.1568
    [27]
    BURGOS E S, WILCZEK C, ONIKUBO T, et al. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase[J]. J Biol Chem, 2015, 290(15): 9674-9689. doi: 10.1074/jbc.M115.636894
    [28]
    STOPA N, KREBS J E, SHECHTER D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond[J]. Cell Mol Life Sci, 2015, 72(11): 2041-2059. doi: 10.1007/s00018-015-1847-9
    [29]
    BARBARINO M, CESARI D, BOTTARO M, et al. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: In vitro evidence of a novel promising approach[J]. J Cell Mol Med, 2020, 24(10): 5565-5577. doi: 10.1111/jcmm.15213
    [30]
    詹康宁, 全旭, 黄张建, 等. 蛋白精氨酸甲基转移酶5抑制剂研究进展[J]. 中国药科大学学报, 2021, 52(3): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD202103015.htm
    [31]
    TAYLOR S A, HOOTON N S, MACARTHUR A M. Quinacrine in the management of malignant pleural effusion[J]. Br J Surg, 1977, 64(1): 52-53. http://www.onacademic.com/detail/journal_1000033779618910_db8d.html
    [32]
    LI X T, JU R J, LI X Y, et al. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells[J]. Oncotarget, 2014, 5(15): 6497-6511. doi: 10.18632/oncotarget.2267
    [33]
    ABDULGHANI J, GOKARE P, GALLANT J N, et al. Sorafenib and Quinacrine Target Anti-Apoptotic Protein MCL1: A Poor Prognostic Marker in Anaplastic Thyroid Cancer (ATC) [J]. Clin Cancer Res, 2016, 22(24): 6192-6203. doi: 10.1158/1078-0432.CCR-15-2792
    [34]
    HUANG C H, LEE Y C, CHEN Y J, et al. Quinacrine induces the apoptosis of human leukemia U937 cells through FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation[J]. Toxicol Appl Pharmacol, 2017, 334: 35-46. doi: 10.1016/j.taap.2017.08.019
    [35]
    SOLOMON V R, ALMNAYAN D, LEE H. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad[J]. Eur J Med Chem, 2017, 137: 156-166. doi: 10.1016/j.ejmech.2017.05.052
    [36]
    DERMAWAN J K, GUROVA K, PINK J, et al. Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer[J]. Mol Cancer Ther, 2014, 13(9): 2203-2214. doi: 10.1158/1535-7163.MCT-14-0013
    [37]
    WANG W, GALLANT J N, KATZ S I, et al. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents[J]. Cancer Biol Ther, 2011, 12(3): 229-238. doi: 10.4161/cbt.12.3.17033
  • Related Articles

    [1]GU Xin, JING Liwei, WANG Andi, LIU Jun, DAI Yongqiang, ZHANG Baoling. Analysis of the recurrence rate and risk factors of renal calculi after intracavitary lithotripsy[J]. Journal of Clinical Medicine in Practice, 2024, 28(10): 39-41. DOI: 10.7619/jcmp.20232864
    [2]LIU Haijia, CHEN Ming, LI Yanzhen. Analysis in risk factors of postoperative recurrence of patients with refractory epilepsy and establishment of a risk prediction model[J]. Journal of Clinical Medicine in Practice, 2024, 28(8): 7-11. DOI: 10.7619/jcmp.20240080
    [3]SHEN Bingyan, SHEN Qian, XU Lingling. Influence factors for recurrence of cytoreductive surgery in patients with epithelial ovarian cancer[J]. Journal of Clinical Medicine in Practice, 2024, 28(4): 14-18. DOI: 10.7619/jcmp.20231817
    [4]CHEN Chunyu, ZHOU Jing, LIU Guyue, YU Jie, GU Jiangkui. Construction and validation of a Nomogram model for postoperative early recurrence in patients with non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(24): 7-13. DOI: 10.7619/jcmp.20232467
    [5]XUE Huimin, CHEN Tao, ZHU Xiaojun. Analysis of postoperative recurrence and risk factors of patients with liver cancer after radical resection[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 35-38. DOI: 10.7619/jcmp.20221356
    [6]GENG Suhong, WANG Weina, WANG Xiaona. Efficacy of rituximab combined with conventional chemotherapy in treating patients with diffuse large B-cell lymphoma and influencing factors of recurrence[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 93-97. DOI: 10.7619/jcmp.20213295
    [7]DONG Yanping, WANG Jiemin, WANG Yujin, REN Yali, DONG Yucheng, YONG Yanjun, SU Xuandi, WANG Jixiang, SU Nan, WANG Fuli, XIA Duosheng. Construction and evaluation of Nomogram prediction model for postoperative recurrence of pterygium[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 52-56. DOI: 10.7619/jcmp.20214610
    [8]LING Yan. Nutritional risk and its influencing factors of severe neurosurgical patients[J]. Journal of Clinical Medicine in Practice, 2017, (10): 43-46. DOI: 10.7619/jcmp.201710014
    [9]YU Shuying. The effect of risk factors management nursing in reducing infection in operation room[J]. Journal of Clinical Medicine in Practice, 2015, (14): 93-95,109. DOI: 10.7619/jcmp.201514030
    [10]CHEN Jinghua, TANG Hui, YU Chuanhu, LI Wei. Research on recurrent situation and risk factors of endometrial cancer[J]. Journal of Clinical Medicine in Practice, 2013, (13): 145-147. DOI: 10.7619/jcmp.201313053
  • Cited by

    Periodical cited type(4)

    1. 殷华芳,沙莎,蔡依玲,于波,刘佳,何佳,孙玲娣,王坚. 宫颈癌放射治疗相关卵巢损伤的分子机制及防治策略研究进展. 实用临床医药杂志. 2024(10): 141-144 . 本站查看
    2. 张玉洲,李晓敏,孙少霖. 蓝萼乙素通过Akt/BAD通路对宫颈癌裸鼠移植瘤生长的影响. 现代药物与临床. 2024(06): 1384-1389 .
    3. 沈静,张丽华,徐晶晶,吕萌萌,吴东辰. 卡瑞利珠单抗联合白蛋白结合型紫杉醇对晚期宫颈癌患者肿瘤标志物、免疫功能和血管新生指标的影响. 现代生物医学进展. 2024(13): 2592-2595 .
    4. 曾美男. 早期宫颈癌术后不同治疗方法的临床效果分析. 实用妇科内分泌电子杂志. 2023(24): 28-30+85 .

    Other cited types(0)

Catalog

    Article views (373) PDF downloads (15) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return