Citation: | ZHANG Qi, WANG Zhiqiang, CAI Huarong, JIANG Yuequan. Role of protein arginine methyltransferase 5 in methylthioadenosine phosphorylase deficient malignant pleural mesothelioma[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 82-87. DOI: 10.7619/jcmp.20212725 |
[1] |
GUO Z, CARBONE M, ZHANG X, et al. Improving the Accuracy of Mesothelioma Diagnosis in China[J]. J Thorac Oncol, 2017, 12(4): 714-723. doi: 10.1016/j.jtho.2016.12.006
|
[2] |
HE J, CHEN W Q. Chinese Cancer Registry Annual Report[M]. Beijing: Military Medical Science Press, 2012: 11-13.
|
[3] |
SCHERPEREEL A, ASTOUL P, BAAS P, et al. European Respiratory Society/European Society of Thoracic Surgeons Task Force. Guidelines of the European Respiratory Society and the European Society of Thoracic Surgeons for the management of malignant pleural mesothelioma[J]. Eur Respir J, 2010, 35(3): 479-495. doi: 10.1183/09031936.00063109
|
[4] |
KATYA M, MICHAEL J, CAMERON, et al. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis[J]. Cell Reports, 2016, 15(3): 574-587. doi: 10.1016/j.celrep.2016.03.043
|
[5] |
BEDFORD M T. Arginine methylation at a glance[J]. J Cell Sci, 2007, 120(Pt24): 4243-4246. http://europepmc.org/abstract/med/18057026
|
[6] |
KARKHANIS V, HU Y J, BAIOCCHI R A, et al. Versatility of PRMT5-induced methylation in growth control and development[J]. Trends Biochem Sci, 2011, 36: 633-641. doi: 10.1016/j.tibs.2011.09.001
|
[7] |
WANG L, PAL S, SIF S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells[J]. Mol Cell Biol, 2008, 28(20): 6262-6277. doi: 10.1128/MCB.00923-08
|
[8] |
PAL S, BAIOCCHI R A, BYRD J C, et al. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma[J]. EMBO J, 2007, 26(15): 3558-3569. doi: 10.1038/sj.emboj.7601794
|
[9] |
GU Z, GAO S, ZHANG F, et al. Protein arginine methyltransferase 5 is essential for growth of lung cancer cells[J]. Biochem J, 2012, 446(2): 235-241. doi: 10.1042/BJ20120768
|
[10] |
ECKERT D, BIERMANN K, NETTERSHEIM D, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors[J]. BMC Dev Biol, 2008, 8: 106. doi: 10.1186/1471-213X-8-106
|
[11] |
BAO X, ZHAO S, LIU T, et al. Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer[J]. J Histochem Cytochem, 2013, 61(3): 206-217. doi: 10.1369/0022155413475452
|
[12] |
NICHOLAS C, YANG J, PETERS S B, et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1. ) [J]. PLoS One, 2013, 8(9): e74710. doi: 10.1371/journal.pone.0074710
|
[13] |
KIM J M, SOHN H Y, YOON S Y, et al. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells[J]. Clin Cancer Res, 2005, 11(2 Pt 1): 473-482. http://europepmc.org/abstract/MED/15701830
|
[14] |
WEI T Y, JUAN C C, HISA J Y, et al. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade[J]. Cancer Sci, 2012, 103(9): 1640-1650. doi: 10.1111/j.1349-7006.2012.02367.x
|
[15] |
UZDENSKY A, DEMYANENKO S, BIBOV M, et al. Expression of proteins involved in epigenetic regulation in human cutaneous melanoma and peritumoral skin[J]. Tumour Biol, 2014, 35(8): 8225-8233. doi: 10.1007/s13277-014-2098-3
|
[16] |
HAN X, LI R, ZHANG W, et al. Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro[J]. J Neurooncol, 2014, 118(1): 61-72. doi: 10.1007/s11060-014-1419-0
|
[17] |
何伶靖, 邹成, 贺琴菊, 等. PRMT5在癌症中的研究进展[J]. 中国细胞生物学学报, 2021, 43(3): 662-674. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ202103022.htm
|
[18] |
ZHANG T, GUNTHER S, LOOSO M, et al. PRMT5 is a regulator of muscle stem cell expansion in adult mice[J]. Nat Commun, 2015, 6: 7140. doi: 10.1038/ncomms8140
|
[19] |
SU C Y, CHANG Y C, CHAN Y C, et al. MTAP is an independent prognosis marker and the concordant loss of MTAP and p16 expression predicts short survival in non-small cell lung cancer patients[J]. Eur J Surg Oncol, 2014, 40(9): 1143-1150. doi: 10.1016/j.ejso.2014.04.017
|
[20] |
M′SOKA T J, NISHIOKA J, TAGA A, et al. Detection of methylthioadenosine phosphorylase (MTAP) and p16 gene deletion in T cell acute lymphoblastic leukemia by real-time quantitative PCR assay[J]. Leukemia, 2000, 14(5): 935-940. doi: 10.1038/sj.leu.2401771
|
[21] |
WATANABE F, TAKAO M, INOUE K, et al. Immunohistochemical diagnosis of methylthioadenosine phosphorylase (MTAP) deficiency in non-small cell lung carcinoma[J]. Lung Cancer, 2009, 63(1): 39-44. doi: 10.1016/j.lungcan.2008.04.019
|
[22] |
SHARKEY A, MARTINSON L, QUESNE J L, et al. Inhibition of PRMT5 is Synthetic Lethal in Mesotheliomas Harboring MTAP Loss[J]. Journal of Thoracic Oncology, 2017, P3. 003-005. http://www.researchgate.net/publication/312415388_P303-005_Inhibition_of_PRMT5_is_Synthetic_Lethal_in_Mesotheliomas_Harboring_MTAP_Loss/download
|
[23] |
MAVRAKIS K J, MCDONALD E R, SCHLABACH M R. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5[J]. Science, 2016, 351(6278): 1208-1213. doi: 10.1126/science.aad5944
|
[24] |
KRYUKOV G V, WILSON F H, RUTH J R, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells[J]. Science, 2016, 351(6278): 1214-1218. doi: 10.1126/science.aad5214
|
[25] |
MULLER F L, COLLA S, AQUILANTI E, et al. Passenger deletions generate therapeutic vulnerabilities in cancer[J]. Nature, 2012, 488(7411): 337-342. doi: 10.1038/nature11331
|
[26] |
ZHAO Q, RANK G, TAN Y, et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing[J]. Nat Struct Mol Biol, 2009, 16: 304-311. doi: 10.1038/nsmb.1568
|
[27] |
BURGOS E S, WILCZEK C, ONIKUBO T, et al. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase[J]. J Biol Chem, 2015, 290(15): 9674-9689. doi: 10.1074/jbc.M115.636894
|
[28] |
STOPA N, KREBS J E, SHECHTER D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond[J]. Cell Mol Life Sci, 2015, 72(11): 2041-2059. doi: 10.1007/s00018-015-1847-9
|
[29] |
BARBARINO M, CESARI D, BOTTARO M, et al. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: In vitro evidence of a novel promising approach[J]. J Cell Mol Med, 2020, 24(10): 5565-5577. doi: 10.1111/jcmm.15213
|
[30] |
詹康宁, 全旭, 黄张建, 等. 蛋白精氨酸甲基转移酶5抑制剂研究进展[J]. 中国药科大学学报, 2021, 52(3): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD202103015.htm
|
[31] |
TAYLOR S A, HOOTON N S, MACARTHUR A M. Quinacrine in the management of malignant pleural effusion[J]. Br J Surg, 1977, 64(1): 52-53. http://www.onacademic.com/detail/journal_1000033779618910_db8d.html
|
[32] |
LI X T, JU R J, LI X Y, et al. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells[J]. Oncotarget, 2014, 5(15): 6497-6511. doi: 10.18632/oncotarget.2267
|
[33] |
ABDULGHANI J, GOKARE P, GALLANT J N, et al. Sorafenib and Quinacrine Target Anti-Apoptotic Protein MCL1: A Poor Prognostic Marker in Anaplastic Thyroid Cancer (ATC) [J]. Clin Cancer Res, 2016, 22(24): 6192-6203. doi: 10.1158/1078-0432.CCR-15-2792
|
[34] |
HUANG C H, LEE Y C, CHEN Y J, et al. Quinacrine induces the apoptosis of human leukemia U937 cells through FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation[J]. Toxicol Appl Pharmacol, 2017, 334: 35-46. doi: 10.1016/j.taap.2017.08.019
|
[35] |
SOLOMON V R, ALMNAYAN D, LEE H. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad[J]. Eur J Med Chem, 2017, 137: 156-166. doi: 10.1016/j.ejmech.2017.05.052
|
[36] |
DERMAWAN J K, GUROVA K, PINK J, et al. Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer[J]. Mol Cancer Ther, 2014, 13(9): 2203-2214. doi: 10.1158/1535-7163.MCT-14-0013
|
[37] |
WANG W, GALLANT J N, KATZ S I, et al. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents[J]. Cancer Biol Ther, 2011, 12(3): 229-238. doi: 10.4161/cbt.12.3.17033
|
1. |
殷华芳,沙莎,蔡依玲,于波,刘佳,何佳,孙玲娣,王坚. 宫颈癌放射治疗相关卵巢损伤的分子机制及防治策略研究进展. 实用临床医药杂志. 2024(10): 141-144 .
![]() | |
2. |
张玉洲,李晓敏,孙少霖. 蓝萼乙素通过Akt/BAD通路对宫颈癌裸鼠移植瘤生长的影响. 现代药物与临床. 2024(06): 1384-1389 .
![]() | |
3. |
沈静,张丽华,徐晶晶,吕萌萌,吴东辰. 卡瑞利珠单抗联合白蛋白结合型紫杉醇对晚期宫颈癌患者肿瘤标志物、免疫功能和血管新生指标的影响. 现代生物医学进展. 2024(13): 2592-2595 .
![]() | |
4. |
曾美男. 早期宫颈癌术后不同治疗方法的临床效果分析. 实用妇科内分泌电子杂志. 2023(24): 28-30+85 .
![]() |