Citation: | SHEN Jing, HUANG Wenjun, NIU Lijian, MA Yongxiang, ZHANG Jing. Research on mechanism of exercise rehabilitation therapy in cardiovascular diseases[J]. Journal of Clinical Medicine in Practice, 2021, 25(15): 124-127. DOI: 10.7619/jcmp.20211454 |
[1] |
CANDELARIA D, RANDALL S, LADAK L, et al. Health-related quality of life and exercise-based cardiac rehabilitation in contemporary acute coronary syndrome patients: a systematic review and meta-analysis[J]. Qual Life Res, 2020, 29(3): 579-592. doi: 10.1007/s11136-019-02338-y
|
[2] |
MCMAHON S R, ADES P A, THOMPSON P D. The role of cardiac rehabilitation in patients with heart disease[J]. Trends Cardiovasc Med, 2017, 27(6): 420-425. doi: 10.1016/j.tcm.2017.02.005
|
[3] |
周方, 王磊. 心脏运动康复相关作用机制的研究进展[J]. 中国康复, 2016, 31(3): 222-225. doi: 10.3870/zgkf.2016.03.020
|
[4] |
门杰, 常一帆, 马振佳, 等. 康复运动对冠心病介入治疗术后患者疗效的meta分析[J]. 中国老年学杂志, 2020, 40(24): 5160-5165. doi: 10.3969/j.issn.1005-9202.2020.24.003
|
[5] |
HAMBRECHT R, ADAMS V, ERBS S, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase[J]. Circulation, 2003, 107(25): 3152-3158. doi: 10.1161/01.CIR.0000074229.93804.5C
|
[6] |
TANAHASHI K, AKAZAWA N, MIYAKI A, et al. Aerobic exercise training decreases plasma asymmetric dimethylarginine concentrations with increase in arterial compliance in postmenopausal women[J]. Am J Hypertens, 2014, 27(3): 415-421. doi: 10.1093/ajh/hpt217
|
[7] |
TOUATI S, MONTEZANO A C, MEZIRI F, et al. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats[J]. Clin Exp Pharmacol Physiol, 2015, 42(2): 179-185. doi: 10.1111/1440-1681.12338
|
[8] |
WESNIGK J, BRUYNDONCKX L, HOYMANS V Y, et al. Impact of lifestyle intervention on HDL-induced ENOS activation and cholesterol efflux capacity in obese adolescent[J]. Cardiol Res Pract, 2016, 2016: 2820432.
|
[9] |
BELARDINELLI R, GEORGIOU D, GINZTON L, et al. Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy[J]. Circulation, 1998, 97(6): 553-561. doi: 10.1161/01.CIR.97.6.553
|
[10] |
ROSS M, TORMEY P, INGRAM L, et al. A 10 km time trial running bout acutely increases the number of angiogenic T cells in the peripheral blood compartment of healthy males[J]. Exp Physiol, 2016, 101(10): 1253-1264. doi: 10.1113/EP085771
|
[11] |
LU X, WU T, HUANG P, et al. Effect and mechanism of intermittent myocardial ischemia induced by exercise on coronary collateral formation[J]. Am J Phys Med Rehabil, 2008, 87(10): 803-814. doi: 10.1097/PHM.0b013e31817faed0
|
[12] |
HAYNES A, LINDEN M D, ROBEY E, et al. Beneficial impacts of regular exercise on platelet function in sedentary older adults: evidence from a randomized 6-mo walking trial[J]. J Appl Physiol (1985), 2018, 125(2): 401-408. doi: 10.1152/japplphysiol.00079.2018
|
[13] |
KEATING F K, SCHNEIDER D J, SAVAGE P D, et al. Effect of exercise training and weight loss on platelet reactivity in overweight patients with coronary artery disease[J]. J Cardiopulm Rehabil Prev, 2013, 33(6): 371-377. doi: 10.1097/HCR.0000000000000015
|
[14] |
XIANG K F, QIN Z, ZHANG H M, et al. Energy metabolism in exercise-induced physiologic cardiac hypertrophy[J]. Front Pharmacol, 2020, 11: 1133. doi: 10.3389/fphar.2020.01133
|
[15] |
GIBB A A, EPSTEIN P N, UCHIDA S, et al. Exercise-induced changes in glucose metabolism promote physiological cardiac growth[J]. Circulation, 2017, 136(22): 2144-2157. doi: 10.1161/CIRCULATIONAHA.117.028274
|
[16] |
BOSTRÖM P, MANN N, WU J, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling[J]. Cell, 2010, 143(7): 1072-1083. doi: 10.1016/j.cell.2010.11.036
|
[17] |
SZABÓM R, PIPICZ M, CSONT T, et al. Modulatory effect of myokines on reactive oxygen species in ischemia/reperfusion[J]. Int J Mol Sci, 2020, 21(24): 9382. doi: 10.3390/ijms21249382
|
[18] |
DANIELSEN T K, SADREDINI M, MANOTHEEPAN R, et al. Exercise Training Stabilizes RyR2-Dependent Ca2+ Release in Post-infarction Heart Failure[J]. Frontiers in Cardiovascular Medicine, 2021, 7: 623922. doi: 10.3389/fcvm.2020.623922
|
[19] |
KEMI O J, ELLINGSEN O, CECI M, et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban[J]. J Mol Cell Cardiol, 2007, 43(3): 354-361. doi: 10.1016/j.yjmcc.2007.06.013
|
[20] |
YANG K C, FOEGER N C, MARIONNEAU C, et al. Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy[J]. J Physiol, 2010, 588(Pt 24): 5015-5032.
|
[21] |
YANG K C, TSENG Y T, NERBONNE J M. Exercise training and PI3Kα-induced electrical remodeling is independent of cellular hypertrophy and Akt signaling[J]. J Mol Cell Cardiol, 2012, 53(4): 532-541. doi: 10.1016/j.yjmcc.2012.07.004
|
[22] |
XU Z, PATEL K P, LOU M F, et al. Up-regulation of K(+) channels in diabetic rat ventricular myocytes by insulin and glutathione[J]. Cardiovasc Res, 2002, 53(1): 80-88. doi: 10.1016/S0008-6363(01)00446-1
|