LU Hangcheng, WEI Weiwei, CHEN Jiming, SHI Ruxia. Research progress of targeted therapy for cervical cancer by tumor-associated macrophages[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 123-127, 132. DOI: 10.7619/jcmp.20201759
Citation: LU Hangcheng, WEI Weiwei, CHEN Jiming, SHI Ruxia. Research progress of targeted therapy for cervical cancer by tumor-associated macrophages[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 123-127, 132. DOI: 10.7619/jcmp.20201759

Research progress of targeted therapy for cervical cancer by tumor-associated macrophages

More Information
  • Received Date: December 21, 2020
  • Available Online: April 20, 2021
  • Published Date: April 14, 2021
  • Tumor associated macrophages (TAM) are important immune cells in the tumor microenvironment (TME), which can secrete a variety of cytokines to participate in and regulate the biological behavior of cervical cancer (CC). A detailed understanding of the mechanism of TAM affecting the growth and metastasis of CC is the key to the development of targeted therapies. In this paper, the progress of TAM treatment in CC was reviewed in recent years, and the potential therapeutic targets, vaccines and drugs for TAM targeted treatment of CC were mainly discussed, which may provide theoretical basis for the research and development of novel targeted drugs for CC, in order to improve the quality of life and prolong the survival time of patients.
  • [1]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2]
    LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell, 2016, 30(5): 668-681. doi: 10.1016/j.ccell.2016.09.011
    [3]
    KRATOFIL R M, KUBES P, DENISET J F. Monocyte conversion during inflammation and injury[J]. Arterioscler Thromb Vasc Biol, 2017, 37(1): 35-42. doi: 10.1161/ATVBAHA.116.308198
    [4]
    CHANMEE T, ONTONG P, KONNO K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers (Basel), 2014, 6(3): 1670-1690. doi: 10.3390/cancers6031670
    [5]
    PEDRAZA-BRINDIS E J, SÁNCHEZ-REYES K, HERNÁNDEZ-FLORES G, et al. Culture supernatants of cervical cancer cells induce an M2 phenotypic profile in THP-1 macrophages[J]. Cell Immunol, 2016, 310: 42-52. doi: 10.1016/j.cellimm.2016.07.001
    [6]
    ZHANG M Y, HE Y F, SUN X J, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients[J]. J Ovarian Res, 2014, 7: 19-19. doi: 10.1186/1757-2215-7-19
    [7]
    JIANG S T, YANG Y H, FANG M, et al. Co-evolution of tumor-associated macrophages and tumor neo-vessels during cervical cancer invasion[J]. Oncol Lett, 2016, 12(4): 2625-2631. doi: 10.3892/ol.2016.5014
    [8]
    DING H, CAI J, MAO M, et al. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells[J]. APMIS, 2014, 122(11): 1059-1069. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM24698523
    [9]
    HEUSINKVELD M, DE VOS VAN STEENWIJK P J, GOEDEMANS R, et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells[J]. J Immunol, 2011, 187(3): 1157-1165. doi: 10.4049/jimmunol.1100889
    [10]
    SÁNCHEZ-REYES K, BRAVO-CUELLAR A, HERN?NDEZ-FLORES G, et al. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile[J]. Biomed Res Int, 2014, 2014: 683068. http://www.ncbi.nlm.nih.gov/pubmed/25309919
    [11]
    SÁNCHEZ-REYES K, PEDRAZA-BRINDIS E J, HERNÁNDEZ-FLORES G, et al. The supernatant of cervical carcinoma cells lines induces a decrease in phosphorylation of STAT-1 and NF-κB transcription factors associated with changes in profiles of cytokines and growth factors in macrophages derived from U937 cells[J]. Innate Immun, 2019, 25(6): 344-355. doi: 10.1177/1753425919848841
    [12]
    HEEREN A M, PUNT S, BLEEKER M C, et al. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix[J]. Mod Pathol, 2016, 29(7): 753-763. doi: 10.1038/modpathol.2016.64
    [13]
    RÄIHÄM R, PUOLAKKAINEN P A. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: a review[J]. Chronic Dis Transl Med, 2018, 4(3): 156-163. http://www.sciencedirect.com/science/article/pii/S2095882X18300112
    [14]
    GUZMÁN-MEDRANO R, ARREOLA-ROSALES R L, SHIBAYAMA M, et al. Tumor-associated macrophages and angiogenesis: a statistical correlation that could reflect a critical relationship in ameloblastoma[J]. Pathol Res Pract, 2012, 208(11): 672-676. doi: 10.1016/j.prp.2012.09.001
    [15]
    CARUS A, LADEKARL M, HAGER H, et al. Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer[J]. Br J Cancer, 2013, 108(10): 2116-2122. doi: 10.1038/bjc.2013.167
    [16]
    PETRILLO M, ZANNONI G F, MARTINELLI E, et al. Polarisation of tumor-associated macrophages toward M2 phenotype correlates with poor response to chemoradiation and reduced survival in patients with locally advanced cervical cancer[J]. PLoS One, 2015, 10(9): e0136654. doi: 10.1371/journal.pone.0136654
    [17]
    NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. doi: 10.1016/j.immuni.2014.06.010
    [18]
    Ruffell B, Coussens L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472. doi: 10.1016/j.ccell.2015.02.015
    [19]
    KIM H J, KIM H J. Current status and future prospects for human papillomavirus vaccines[J]. Arch Pharm Res, 2017, 40(9): 1050-1063. doi: 10.1007/s12272-017-0952-8
    [20]
    HOPPE-SEYLER K, BOSSLER F, BRAUN J A, et al. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets[J]. Trends Microbiol, 2018, 26(2): 158-168. doi: 10.1016/j.tim.2017.07.007
    [21]
    CHE Y X, YANG Y, SUO J G, et al. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer[J]. Cancer Immunol Immunother, 2020, 69(12): 2651-2664. doi: 10.1007/s00262-020-02651-3
    [22]
    HAFNER A M, CORTH? SY B, MERKLE H P. Particulate formulations for the delivery of poly(I: C) as vaccine adjuvant[J]. Adv Drug Deliv Rev, 2013, 65(10): 1386-1399. doi: 10.1016/j.addr.2013.05.013
    [23]
    STONE S C, ROSSETTI R A M, ALVAREZ K L F, et al. Lactate secreted by cervical cancer cells modulates macrophage phenotype[J]. J Leukoc Biol, 2019, 105(5): 1041-1054. doi: 10.1002/JLB.3A0718-274RR
    [24]
    DOU Y Y, HUANG D Q, ZENG X Y, et al. All-trans retinoic acid enhances the effect of Fra-1 to inhibit cell proliferation and metabolism in cervical cancer[J]. Biotechnol Lett, 2020, 42(6): 1051-1060. doi: 10.1007/s10529-020-02847-8
    [25]
    RADOGNA F, DICATO M, DIEDERICH M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target[J]. Biochem Pharmacol, 2015, 94(1): 1-11. doi: 10.1016/j.bcp.2014.12.018
    [26]
    MENG M B, WANG H H, CUI Y L, et al. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy[J]. Oncotarget, 2016, 7(35): 57391-57413. doi: 10.18632/oncotarget.10548
    [27]
    LI L, YU S, ZANG C Y. Low necroptosis process predicts poor treatment outcome of human papillomavirus positive cervical cancers by decreasing tumor-associated macrophages M1 polarization[J]. Gynecol Obstet Invest, 2018, 83(3): 259-267. doi: 10.1159/000487434
    [28]
    OHSHIKA Y, UMESAKI N, SUGAWA T. Immunomodulating capacity of the monocyte-macrophage system in patients with uterine cervical cancer[J]. Nihon Sanka Fujinka Gakkai Zasshi, 1988, 40: 601-608. http://www.ncbi.nlm.nih.gov/pubmed/3260261
    [29]
    DIJKGRAAF E M, HEUSINKVELD M, TUMMERS B, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment[J]. Cancer Res, 2013, 73(8): 2480-2492. doi: 10.1158/0008-5472.CAN-12-3542
    [30]
    SU Q, FAN M Y, WANG J J, et al. Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(12): 939. doi: 10.1038/s41419-019-2173-1
    [31]
    PEIXOTO P, ETCHEVERRY A, AUBRY M, et al. EMT is associated with an epigenetic signature of ECM remodeling genes[J]. Cell Death Dis, 2019, 10(3): 205. doi: 10.1038/s41419-019-1397-4
    [32]
    SU S C, LIU Q, CHEN J Q, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis[J]. Cancer Cell, 2014, 25(5): 605-620. doi: 10.1016/j.ccr.2014.03.021
    [33]
    LIU N, MA M X, QU N, et al. Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo[J]. Int Immunopharmacol, 2020, 86: 106718. doi: 10.1016/j.intimp.2020.106718
    [34]
    SINGH S V, AJAY A K, MOHAMMAD N, et al. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment[J]. Cell Death Dis, 2015, 6: e1934. doi: 10.1038/cddis.2015.292
    [35]
    CHEN X J, WU S, YAN R M, et al. The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer[J]. Mol Carcinog, 2019, 58(3): 388-397. doi: 10.1002/mc.22936
    [36]
    CHEN X J, DENG Y R, WANG Z C, et al. Hypoxia-induced ZEB1 promotes cervical cancer progression via CCL8-dependent tumour-associated macrophage recruitment[J]. Cell Death Dis, 2019, 10(7): 508. doi: 10.1038/s41419-019-1748-1
    [37]
    STRACHAN D C, RUFFELL B, OEI Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells[J]. Oncoimmunology, 2013, 2(12): e26968. doi: 10.4161/onci.26968
    [38]
    GUO F, FENG Y C, ZHAO G, et al. Tumor-associated CD163+ M2 macrophage infiltration is highly associated with PD-L1 expression in cervical cancer[J]. Cancer Manag Res, 2020, 12: 5831-5843. doi: 10.2147/CMAR.S257692
    [39]
    JANTOVÁS, PAULOVI? OVÁE, PAULOVI? OVÁL, et al. Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone ethyl 6-fluoro-8-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxylate[J]. Immunobiology, 2018, 223(1): 81-93. doi: 10.1016/j.imbio.2017.10.008
    [40]
    GIRAUDO E, INOUE M, HANAHAN D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis[J]. J Clin Invest, 2004, 114(5): 623-633. doi: 10.1172/JCI200422087
  • Related Articles

    [1]LI Yan, HAN Li. Relationships of serum levels of B-type natriuretic peptide and insulin-like growth factor binding protein-3 with atrial fibrillation in patients with non-alcoholic fatty liver disease[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 101-105,109. DOI: 10.7619/jcmp.20234044
    [2]SHAO Huijuan, ZHENG Xiaofeng, HUANG Jun, MA Xuefeng, YU Xiaohui, ZHANG Jiucong. Research progress on roles of bile acids and its receptors in pathogenesis of non-alcoholic fatty liver disease and pharmacological treatment[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 143-148. DOI: 10.7619/jcmp.20230573
    [3]XU Qi, ZHAO Donghui, ZHANG Lingling, WANG Xu, WANG Tairong. Correlations of serum uric acid level with non-alcoholic fatty liver disease and carotid atherosclerosis in young and middle-aged people[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 20-25. DOI: 10.7619/jcmp.20220338
    [4]LIU Yu, NIU Shuli, LI Mengyue, LI Xiaotian. Research progress of curcumin in the treatmentof non-alcoholic fatty liver disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(5): 118-124. DOI: 10.7619/jcmp.20200328
    [5]LI Yang, DU Zhixiang, WANG Muting, LIU Luyang, XIAO Li, DOU Yuming, PANG Xiaoying. Correlation between disease progression and levels of T cells in patients with non-alcoholic fatty liver disease[J]. Journal of Clinical Medicine in Practice, 2020, 24(14): 11-14,18. DOI: 10.7619/jcmp.202014003
    [6]HU Shunlin, LI Min, YE Jiangfeng, ZHANG Jing. Analysis in detection results of apolipoprotein B and uric acid levels in patients with non-alcoholic fatty liver disease[J]. Journal of Clinical Medicine in Practice, 2019, 23(8): 25-27. DOI: 10.7619/jcmp.201908006
    [7]CHEN Mei, ZHANG Jing. Observation of curative effect of continuous nursing mode for patients with alcoholic liver disease[J]. Journal of Clinical Medicine in Practice, 2014, (10): 91-93. DOI: 10.7619/jcmp.201410032
    [8]ZHANG Li. Analysis of biochemical characteristic and insulin resistance in type 2 diabetes mellitus patients with non-alcoholic fatty liver[J]. Journal of Clinical Medicine in Practice, 2013, (17): 9-11. DOI: 10.7619/jcmp.201317003
    [9]HUA Lin, SHI Jie, XU Lan, LIU Fengzhu. Nursing intervention for alcoholic cirrhosis patients with withdrawal syndrome[J]. Journal of Clinical Medicine in Practice, 2013, (12): 59-62. DOI: 10.7619/jcmp.201312023
    [10]ZHANG Liping, CHEN Liangfen, ZHANG Xihua. Influence of targeted nursing on clinical compliance of patients with alcoholism in department of emergency[J]. Journal of Clinical Medicine in Practice, 2013, (12): 29-31. DOI: 10.7619/jcmp.201312012
  • Cited by

    Periodical cited type(1)

    1. 吴春蕾,杨盼,徐敏,李瑛,王跃涛. 心电图P波离散度及Ⅱ导联P波峰值时间对原发性高血压患者新发心房颤动的预测价值. 实用临床医药杂志. 2024(22): 21-25 . 本站查看

    Other cited types(0)

Catalog

    Article views (517) PDF downloads (35) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return