Citation: | LU Hangcheng, WEI Weiwei, CHEN Jiming, SHI Ruxia. Research progress of targeted therapy for cervical cancer by tumor-associated macrophages[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 123-127, 132. DOI: 10.7619/jcmp.20201759 |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|
[2] |
LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell, 2016, 30(5): 668-681. doi: 10.1016/j.ccell.2016.09.011
|
[3] |
KRATOFIL R M, KUBES P, DENISET J F. Monocyte conversion during inflammation and injury[J]. Arterioscler Thromb Vasc Biol, 2017, 37(1): 35-42. doi: 10.1161/ATVBAHA.116.308198
|
[4] |
CHANMEE T, ONTONG P, KONNO K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers (Basel), 2014, 6(3): 1670-1690. doi: 10.3390/cancers6031670
|
[5] |
PEDRAZA-BRINDIS E J, SÁNCHEZ-REYES K, HERNÁNDEZ-FLORES G, et al. Culture supernatants of cervical cancer cells induce an M2 phenotypic profile in THP-1 macrophages[J]. Cell Immunol, 2016, 310: 42-52. doi: 10.1016/j.cellimm.2016.07.001
|
[6] |
ZHANG M Y, HE Y F, SUN X J, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients[J]. J Ovarian Res, 2014, 7: 19-19. doi: 10.1186/1757-2215-7-19
|
[7] |
JIANG S T, YANG Y H, FANG M, et al. Co-evolution of tumor-associated macrophages and tumor neo-vessels during cervical cancer invasion[J]. Oncol Lett, 2016, 12(4): 2625-2631. doi: 10.3892/ol.2016.5014
|
[8] |
DING H, CAI J, MAO M, et al. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells[J]. APMIS, 2014, 122(11): 1059-1069. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM24698523
|
[9] |
HEUSINKVELD M, DE VOS VAN STEENWIJK P J, GOEDEMANS R, et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells[J]. J Immunol, 2011, 187(3): 1157-1165. doi: 10.4049/jimmunol.1100889
|
[10] |
SÁNCHEZ-REYES K, BRAVO-CUELLAR A, HERN?NDEZ-FLORES G, et al. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile[J]. Biomed Res Int, 2014, 2014: 683068. http://www.ncbi.nlm.nih.gov/pubmed/25309919
|
[11] |
SÁNCHEZ-REYES K, PEDRAZA-BRINDIS E J, HERNÁNDEZ-FLORES G, et al. The supernatant of cervical carcinoma cells lines induces a decrease in phosphorylation of STAT-1 and NF-κB transcription factors associated with changes in profiles of cytokines and growth factors in macrophages derived from U937 cells[J]. Innate Immun, 2019, 25(6): 344-355. doi: 10.1177/1753425919848841
|
[12] |
HEEREN A M, PUNT S, BLEEKER M C, et al. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix[J]. Mod Pathol, 2016, 29(7): 753-763. doi: 10.1038/modpathol.2016.64
|
[13] |
RÄIHÄM R, PUOLAKKAINEN P A. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: a review[J]. Chronic Dis Transl Med, 2018, 4(3): 156-163. http://www.sciencedirect.com/science/article/pii/S2095882X18300112
|
[14] |
GUZMÁN-MEDRANO R, ARREOLA-ROSALES R L, SHIBAYAMA M, et al. Tumor-associated macrophages and angiogenesis: a statistical correlation that could reflect a critical relationship in ameloblastoma[J]. Pathol Res Pract, 2012, 208(11): 672-676. doi: 10.1016/j.prp.2012.09.001
|
[15] |
CARUS A, LADEKARL M, HAGER H, et al. Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer[J]. Br J Cancer, 2013, 108(10): 2116-2122. doi: 10.1038/bjc.2013.167
|
[16] |
PETRILLO M, ZANNONI G F, MARTINELLI E, et al. Polarisation of tumor-associated macrophages toward M2 phenotype correlates with poor response to chemoradiation and reduced survival in patients with locally advanced cervical cancer[J]. PLoS One, 2015, 10(9): e0136654. doi: 10.1371/journal.pone.0136654
|
[17] |
NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. doi: 10.1016/j.immuni.2014.06.010
|
[18] |
Ruffell B, Coussens L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472. doi: 10.1016/j.ccell.2015.02.015
|
[19] |
KIM H J, KIM H J. Current status and future prospects for human papillomavirus vaccines[J]. Arch Pharm Res, 2017, 40(9): 1050-1063. doi: 10.1007/s12272-017-0952-8
|
[20] |
HOPPE-SEYLER K, BOSSLER F, BRAUN J A, et al. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets[J]. Trends Microbiol, 2018, 26(2): 158-168. doi: 10.1016/j.tim.2017.07.007
|
[21] |
CHE Y X, YANG Y, SUO J G, et al. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer[J]. Cancer Immunol Immunother, 2020, 69(12): 2651-2664. doi: 10.1007/s00262-020-02651-3
|
[22] |
HAFNER A M, CORTH? SY B, MERKLE H P. Particulate formulations for the delivery of poly(I: C) as vaccine adjuvant[J]. Adv Drug Deliv Rev, 2013, 65(10): 1386-1399. doi: 10.1016/j.addr.2013.05.013
|
[23] |
STONE S C, ROSSETTI R A M, ALVAREZ K L F, et al. Lactate secreted by cervical cancer cells modulates macrophage phenotype[J]. J Leukoc Biol, 2019, 105(5): 1041-1054. doi: 10.1002/JLB.3A0718-274RR
|
[24] |
DOU Y Y, HUANG D Q, ZENG X Y, et al. All-trans retinoic acid enhances the effect of Fra-1 to inhibit cell proliferation and metabolism in cervical cancer[J]. Biotechnol Lett, 2020, 42(6): 1051-1060. doi: 10.1007/s10529-020-02847-8
|
[25] |
RADOGNA F, DICATO M, DIEDERICH M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target[J]. Biochem Pharmacol, 2015, 94(1): 1-11. doi: 10.1016/j.bcp.2014.12.018
|
[26] |
MENG M B, WANG H H, CUI Y L, et al. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy[J]. Oncotarget, 2016, 7(35): 57391-57413. doi: 10.18632/oncotarget.10548
|
[27] |
LI L, YU S, ZANG C Y. Low necroptosis process predicts poor treatment outcome of human papillomavirus positive cervical cancers by decreasing tumor-associated macrophages M1 polarization[J]. Gynecol Obstet Invest, 2018, 83(3): 259-267. doi: 10.1159/000487434
|
[28] |
OHSHIKA Y, UMESAKI N, SUGAWA T. Immunomodulating capacity of the monocyte-macrophage system in patients with uterine cervical cancer[J]. Nihon Sanka Fujinka Gakkai Zasshi, 1988, 40: 601-608. http://www.ncbi.nlm.nih.gov/pubmed/3260261
|
[29] |
DIJKGRAAF E M, HEUSINKVELD M, TUMMERS B, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment[J]. Cancer Res, 2013, 73(8): 2480-2492. doi: 10.1158/0008-5472.CAN-12-3542
|
[30] |
SU Q, FAN M Y, WANG J J, et al. Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(12): 939. doi: 10.1038/s41419-019-2173-1
|
[31] |
PEIXOTO P, ETCHEVERRY A, AUBRY M, et al. EMT is associated with an epigenetic signature of ECM remodeling genes[J]. Cell Death Dis, 2019, 10(3): 205. doi: 10.1038/s41419-019-1397-4
|
[32] |
SU S C, LIU Q, CHEN J Q, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis[J]. Cancer Cell, 2014, 25(5): 605-620. doi: 10.1016/j.ccr.2014.03.021
|
[33] |
LIU N, MA M X, QU N, et al. Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo[J]. Int Immunopharmacol, 2020, 86: 106718. doi: 10.1016/j.intimp.2020.106718
|
[34] |
SINGH S V, AJAY A K, MOHAMMAD N, et al. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment[J]. Cell Death Dis, 2015, 6: e1934. doi: 10.1038/cddis.2015.292
|
[35] |
CHEN X J, WU S, YAN R M, et al. The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer[J]. Mol Carcinog, 2019, 58(3): 388-397. doi: 10.1002/mc.22936
|
[36] |
CHEN X J, DENG Y R, WANG Z C, et al. Hypoxia-induced ZEB1 promotes cervical cancer progression via CCL8-dependent tumour-associated macrophage recruitment[J]. Cell Death Dis, 2019, 10(7): 508. doi: 10.1038/s41419-019-1748-1
|
[37] |
STRACHAN D C, RUFFELL B, OEI Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells[J]. Oncoimmunology, 2013, 2(12): e26968. doi: 10.4161/onci.26968
|
[38] |
GUO F, FENG Y C, ZHAO G, et al. Tumor-associated CD163+ M2 macrophage infiltration is highly associated with PD-L1 expression in cervical cancer[J]. Cancer Manag Res, 2020, 12: 5831-5843. doi: 10.2147/CMAR.S257692
|
[39] |
JANTOVÁS, PAULOVI? OVÁE, PAULOVI? OVÁL, et al. Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone ethyl 6-fluoro-8-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxylate[J]. Immunobiology, 2018, 223(1): 81-93. doi: 10.1016/j.imbio.2017.10.008
|
[40] |
GIRAUDO E, INOUE M, HANAHAN D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis[J]. J Clin Invest, 2004, 114(5): 623-633. doi: 10.1172/JCI200422087
|
1. |
吴春蕾,杨盼,徐敏,李瑛,王跃涛. 心电图P波离散度及Ⅱ导联P波峰值时间对原发性高血压患者新发心房颤动的预测价值. 实用临床医药杂志. 2024(22): 21-25 .
![]() |