肿瘤相关中性粒细胞与肝癌发展的相关性研究进展

徐嘉庆, 李锦貌

徐嘉庆, 李锦貌. 肿瘤相关中性粒细胞与肝癌发展的相关性研究进展[J]. 实用临床医药杂志, 2021, 25(13): 129-132. DOI: 10.7619/jcmp.20211016
引用本文: 徐嘉庆, 李锦貌. 肿瘤相关中性粒细胞与肝癌发展的相关性研究进展[J]. 实用临床医药杂志, 2021, 25(13): 129-132. DOI: 10.7619/jcmp.20211016
XU Jiaqing, LI Jinmao. Research progress on correlation between tumor-associated neutrophils and development of liver cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 129-132. DOI: 10.7619/jcmp.20211016
Citation: XU Jiaqing, LI Jinmao. Research progress on correlation between tumor-associated neutrophils and development of liver cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 129-132. DOI: 10.7619/jcmp.20211016

肿瘤相关中性粒细胞与肝癌发展的相关性研究进展

详细信息
    通讯作者:

    李锦貌, E-mail: lijinmao@sina.com

  • 中图分类号: R735.7;R730.1

Research progress on correlation between tumor-associated neutrophils and development of liver cancer

  • 摘要: 中国为原发性肝癌高发地区,大部分肝癌患者首诊时已为晚期,具有治疗效果欠佳、预后差、5年生存率低等特点。肝癌发病机制复杂,针对肝癌防治的新靶点亟待探索。中性粒细胞在机体固有免疫中发挥防御作用,而研究发现中性粒细胞在肝癌肿瘤微环境中也扮演了重要角色,参与了肝癌发生、发展和转移等多个环节。本研究对肿瘤相关中性粒细胞在肝癌肿瘤微环境中相关作用的研究进展进行分析,探索肝癌的潜在治疗靶点,并为肝癌的防治策略提供新的思路。
    Abstract: China is a high incidence area of primary liver cancer. Most of the patients with liver cancer are in advanced stage at first diagnosis, which has the characteristics of poor treatment effect, poor prognosis and low 5-year survival rate. The pathogenesis of liver cancer is complex, and new targets for the prevention and treatment of liver cancer need to be explored. Neutrophils play a defense role in innate immunity. Studies have found that neutrophils also play an important role in the tumor microenvironment of liver cancer, which participate in the occurrence, development and metastasis of liver cancer. In this study, we analyzed the research progress of tumor-associated neutrophils in the tumor microenvironment of liver cancer, explored the potential therapeutic targets of liver cancer, and provided new ideas for the prevention and treatment of liver cancer.
  • 原发性肝癌是全球最常见的肝脏恶性肿瘤,其主要类型为肝细胞癌(HCC)[1]。中国是乙型病毒性肝炎及原发性肝癌的高患病率地区[2],大多数肝癌都发生在慢性炎症引发的肝硬化后,炎症与肿瘤的相互作用尤为明显[3]。肝癌的肿瘤微环境主要由肝癌细胞与炎症细胞等细胞成分以及分泌的趋化因子和炎症因子等非细胞成分组成[4]。研究[5]报道,肿瘤相关中性粒细胞(TAN)可以加速肝癌细胞的增殖并抑制其凋亡,促进血管生成,进一步诱导肝癌的恶化。本研究分析TAN在肝癌中的作用,现报告如下。

    炎症与肿瘤的关系最早是Rudolf Virchow在1863年提出[6]。目前,研究[7]已证实肿瘤微环境与肿瘤细胞的动态相互作用极大地影响了肿瘤的生长、转移和侵袭。肿瘤相关炎症是肿瘤的关键组成部分之一,是肿瘤的第7个标志[6, 8]。中性粒细胞是肿瘤微环境中的重要组成部分,在肿瘤发生、发展中起重要的调节作用[9]。在肿瘤微环境中,中性粒细胞受相关趋化因子调节[10]。肝癌组织分泌多种趋化因子,如趋化因子受体2(CXCR2)、趋化因子配体5(CXCL5)等[11-12], 其中CXCR2是募集循环中性粒细胞至肿瘤部位的主要趋化因子[13]。KUANG D M等[14]证实白介素-17也可通过产生趋化因子或激活产生白介素-17的T细胞,促进中性粒细胞向肝癌组织周围募集。研究[15]表明,白介素-17水平升高与根治性肝切除术后肝癌早期复发风险呈正相关,是预测肝癌预后的潜在因子。研究[16-17]还发现CXCR2水平升高与肝癌的进展有显著相关性,抑制中性粒细胞的CXCR2表达可使中性粒细胞滞留在骨髓中。目前, CXCR2抑制剂在临床前实验已得到证实,其对肿瘤进展和转移有肯定的疗效[18]。目前认为CXCR2抑制剂可阻碍肿瘤对中性粒细胞的募集,通过影响TAN而干预肿瘤进展,是治疗肿瘤的潜在靶点。

    相关研究[19]表明, TAN并不是终末分化的免疫效应细胞,而是具有极大的可塑性,可被Ⅰ型干扰素或转化生长因子-β分别极化成N1表型或N2表型。虽然TAN的N1表型和N2表型在肿瘤中的功能与作用并不相同,但未能找到可以区分N1、N2表型的表面标志物。TAN的N1表型通过产生活性氧(ROS)、肿瘤坏死因子-α、细胞间黏附分子1以及减少精氨酸酶表达而表现出增强的细胞毒性和降低的免疫抑制力,进而发挥抗肿瘤作用。TAN的N2表型则通过基质金属蛋白酶(MMPs)、血管内皮生长因子、各类趋化因子及表达精氨酸酶而促进肿瘤的发生、发展[20]。TAN的N1表型和N2表型可在不同的肿瘤微环境下互相转化。

    在小鼠的肿瘤模型中,抑制转化生长因子-β将改变TAN的表型,诱导TAN的N2表型向N1表型转化,使得TAN的N1表型抗肿瘤作用增强[21]。同样,Ⅰ型干扰素也被证实可诱导TAN从N2表型转变为N1表型。所以,从N1表型到N2表型的相互转换提示Ⅰ型干扰素和转化生长因子-β细胞因子间可能存在拮抗信号通路[22]。研究[23]表明提高肿瘤的氧气供给可使TAN的N2表型向N1表型转化。TAN对不同细胞因子的敏感性和反应的可变性使得研究其在肿瘤中的作用变得更加困难[19]。在晚期肝癌患者的Ⅱ期临床试验中,实验组使用转化生长因子-β抑制剂后的生存期较对照组延长,这种改善效应可能与TAN表型转换有关[24]。由此可见, TAN的不同表型对肝癌预后有显著影响,但在肝癌免疫微环境中, TAN的N1与N2表型可相互转换,因而调控TAN表型使其发挥抗肿瘤效应可能是未来肝癌防治发展的新方向。

    中性粒细胞是人体最丰富的白细胞,是机体的首道防御机制。中性粒细胞作为人体吞噬细胞系统的重要组成部分,可形成吞噬小体,利用还原型辅酶Ⅱ(NADPH)氧化酶改变吞噬小体pH值,并通过氧爆发释放ROS, 从而杀死病原体[25]。TAN的N1表型可以表现出增强的NADPH氧化酶活性,使ROS产生增多,这些ROS又对肿瘤细胞具有细胞毒性,继而发挥抗肿瘤作用[26]。目前研究[27]发现, TAN释放的ROS不仅有抗肿瘤作用,还可损伤DNA碱基从而导致基因组突变来介导肿瘤的发展,也可作为第二信使促进肿瘤进展。这种双重作用表明ROS在细胞稳态占有重要地位。因此,调控ROS可能是一种防治肝癌的方法。

    中性粒细胞中有3种不同颗粒(初级、次级和三级颗粒)以及分泌小泡,这些颗粒由各类蛋白酶组成,包括MMPs、组织蛋白酶G和中性粒细胞弹性酶等[28]。MMPs在肿瘤进程中发挥各种作用,包括肿瘤细胞增殖和迁移,并在肿瘤细胞凋亡、血管生成、肿瘤组织再生和免疫反应中发挥作用[29]。在肝癌中, MMPs可通过破坏基质的降解平衡促进肿瘤细胞突破基底膜和细胞外基质构成的组织学屏障,向周围组织侵袭和远处组织转移,这也是肝癌患者预后不良的主要因素[30]。此外,在肝癌肿瘤微环境中, MMPs也可诱导和促进上皮间质转化,促进肝癌进一步发展[31]。TAN对肝癌的影响并不局限于此,其还可以通过分泌肝细胞生长因子刺激MMPs启动和维持上皮间质转化,有利于肝癌细胞侵入细胞外基质,使其更容易转移[32]。中性粒细胞弹性蛋白酶和组织蛋白酶G可通过降解血小板反应蛋白1而促使肿瘤向肺部转移[33]。TAN可通过其内容颗粒在肝癌中发挥多种病理生理作用,促使肝癌转移,加速病情进展。因此,调控TAN内相关的蛋白酶或可抑制肿瘤细胞的侵袭和转移。

    随着研究的深入,介导TAN作用的因子越来越多样化。研究[12]发现TAN分泌的骨形态发生蛋白2和转化生长因子-β2可激活肝癌细胞的miR-301b-3p的表达,抑制边缘基因表达膜蛋白和头帕肿瘤综合征蛋白(CYLD)赖氨酸去泛素酶,增强肝癌细胞的干细胞特性,而这些通过TAN诱导的干细胞样肝癌细胞可分泌更多的CXCL5, 招募TAN瘤内浸润,形成TAN-肝癌细胞-干细胞样肝癌细胞-TAN的正反馈通路,促进肝癌侵袭和转移。在肝癌患者中,研究人员[34]还发现TAN也可以募集巨噬细胞和调节性T细胞,以促进肿瘤细胞的生长、发展和对索拉非尼的抵抗。因此,在对肝癌的免疫治疗中, TAN可以作为一个很好的切入点,通过干预TAN可以减弱自身和其他肿瘤相关炎性细胞对肿瘤进展的促进作用,以获得较好的疗效。

    NET是由中性粒细胞外释放去浓缩的染色质、组蛋白和颗粒蛋白酶组成的丝状结构。2004年,BRINKMANN V等[35]发现NET是中性粒细胞的另一种杀伤机制,这种机制被称为中性粒细胞胞外诱捕网凋零,也是中性粒细胞独特的死亡方式。据相关研究[36]报道,NET通过覆盖肿瘤细胞来阻断其与免疫细胞的接触,保护肿瘤细胞免受CD8+ T细胞和自然杀伤细胞介导的细胞毒性作用。在肝癌患者中, NET可捕获体内的循环肿瘤细胞,增强循环肿瘤细胞的迁移与血管新生能力,最终促进肝癌转移[37]。NET在肝癌进展中的作用已成为当前研究的热点,可为肝癌的治疗提供新的思路。

    中性粒细胞与肝癌进展存在密切的联系,而NLR是一种在临床广泛应用的炎性生物指标,是可用于预测不同治疗方式的肝癌患者预后的独立因素。在日本, HARIMOTO N等[38]研究216例接受活体肝移植的肝癌患者发现,以术前NLR为2.66将其分成2组,高NLR组的3年无病生存期为74.4%,而低NLR组的3年无病生存期为92.8%。YANG H J等[39]对526例肝癌根治性切除患者进行回顾性分析发现,术前NLR是无病生存期和总生存期的独立预测因素,而高NLR组(NLR≥2.81)的1、3、5年的无病生存期及总生存期均低于低NLR组(NLR < 2.81)。LIU C等[40]对793例动脉化疗栓塞术的中晚期肝癌患者进行分析发现,低NLR组(NLR≤2.2)的中位总生存期为18个月,高于高NLR组(NLR>2.2)的7个月。由此可见,术前NLR与肝癌预后呈负相关,临床上可根据患者术前NLR制订精准的个体化医疗方案。

    中国大部分肝癌患者在首诊时已属晚期,且多数伴有严重的肝硬化,根治性治疗仅适用于部分患者[41]。研究[42]表明,非根治性治疗的中、晚期肝癌患者的中位生存期分别为16、6~8个月。因此,需要一种不同于传统治疗机制的新治疗方案来改善肝癌的预后。本研究总结了TAN在肝癌中的作用研究的相关进展,结果表明TAN与肝癌进展及转移的关系密切,其中部分相关机制已被阐明。临床前研究发现干预TAN本身或其作用机制对肝癌患者有肯定疗效; TAN表型的可塑性、功能的多样性均提示TAN作为肝癌潜在治疗靶点的可能性,探索针对TAN相关综合治疗的靶向干预,或可为肝癌的防治提供新途径。

  • [1]

    PETRICK J L, FLORIO A A, ZNAOR A, et al. International trends in hepatocellular carcinoma incidence, 1978-2012[J]. Int J Cancer, 2020, 147(2): 317-330. doi: 10.1002/ijc.32723

    [2]

    RAZAVI-SHEARER D, GAMKRELIDZE I, NGUYEN M H, et al. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study[J]. The Lancet Gastroenterology & Hepatology, 2018, 3(6): 383-403. http://www.ncbi.nlm.nih.gov/pubmed/29599078

    [3]

    BUONAGURO L, TAGLIAMONTE M, PETRIZZO A, et al. Cellular prognostic markers in hepatocellular carcinoma[J]. Future Oncol, 2015, 11(11): 1591-1598. doi: 10.2217/fon.15.39

    [4]

    WU T, DAI Y. Tumor microenvironment and therapeutic response[J]. Cancer Lett, 2017, 387: 61-68. doi: 10.1016/j.canlet.2016.01.043

    [5]

    HUO X, LI H, LI Z, et al. Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish[J]. Sci Rep, 2019, 9(1): 1509. doi: 10.1038/s41598-018-36605-8

    [6]

    BALKWILL F, MANTOVANI A. Inflammation and cancer: back to Virchow[J]. Lancet, 2001, 357(9255): 539-545. doi: 10.1016/S0140-6736(00)04046-0

    [7]

    HERNANDEZ-GEA V, TOFFANIN S, FRIEDMAN S L, et al. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[J]. Gastroenterology, 2013, 144(3): 512-527. doi: 10.1053/j.gastro.2013.01.002

    [8]

    MANTOVANI A, ALLAVENA P, SICA A, et al. Cancer-related inflammation[J]. Nature, 2008, 454(7203): 436-444. doi: 10.1038/nature07205

    [9]

    SINGEL K L, SEGAL B H. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal[J]. Immunol Rev, 2016, 273(1): 329-343. doi: 10.1111/imr.12459

    [10]

    TECCHIO C, CASSATELLA M A. Neutrophil-derived chemokines on the road to immunity[J]. Semin Immunol, 2016, 28(2): 119-128. doi: 10.1016/j.smim.2016.04.003

    [11]

    LI L, XU L, YAN J, et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2015, 34: 129. doi: 10.1186/s13046-015-0247-1

    [12]

    ZHOU S L, YIN D, HU Z Q, et al. A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression[J]. Hepatology, 2019, 70(4): 1214-1230. doi: 10.1002/hep.30630

    [13]

    FRIDLENDER Z G, ALBELDA S M. Tumor-associated neutrophils: friend or foe[J]. Carcinogenesis, 2012, 33(5): 949-955. doi: 10.1093/carcin/bgs123

    [14]

    KUANG D M, ZHAO Q Y, WU Y, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma[J]. J Hepatol, 2011, 54(5): 948-955. doi: 10.1016/j.jhep.2010.08.041

    [15]

    WU J X, DU J, LIU L G, et al. Elevated pretherapy serum IL-17 in primary hepatocellular carcinoma patients correlate to increased risk of early recurrence after curative hepatectomy[J]. PLoS One, 2012, 7(12): e50035. doi: 10.1371/journal.pone.0050035

    [16]

    WU Y, WANG S, FAROOQ S M, et al. A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory diseases[J]. J Biol Chem, 2012, 287(8): 5744-5755. doi: 10.1074/jbc.M111.315762

    [17]

    BI H, ZHANG Y, WANG S, et al. Interleukin-8 promotes cell migration via CXCR1 and CXCR2 in liver cancer[J]. Oncol Lett, 2019, 18(4): 4176-4184. http://www.ncbi.nlm.nih.gov/pubmed/?term=DOI:%2010.3892/ol.2019.10735

    [18]

    CHENG Y, MA X L, WEI Y Q, et al. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 289-312. http://www.ncbi.nlm.nih.gov/pubmed/30703432

    [19]

    GIESE M A, HIND L E, HUTTENLOCHER A. Neutrophil plasticity in the tumor microenvironment[J]. Blood, 2019, 133(20): 2159-2167. doi: 10.1182/blood-2018-11-844548

    [20]

    MUKAIDA N, SASAKI S I, BABA T. Two-faced roles of tumor-associated neutrophils in cancer development and progression[J]. Int J Mol Sci, 2020, 21(10): E3457. doi: 10.3390/ijms21103457

    [21]

    FRIDLENDER Z G, SUN J, KIM S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN[J]. Cancer Cell, 2009, 16(3): 183-194. doi: 10.1016/j.ccr.2009.06.017

    [22]

    PYLAEVA E, LANG S, JABLONSKA J. The essential role of type I interferons in differentiation and activation of tumor-associated neutrophils[J]. Front Immunol, 2016, 7: 629. http://europepmc.org/articles/PMC5174087/

    [23]

    MAHIDDINE K, BLAISDELL A, MA S, et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils[J]. J Clin Invest, 2020, 130(1): 389-403. http://www.researchgate.net/publication/336429592_Relief_of_tumor_hypoxia_unleashes_the_tumoricidal_potential_of_neutrophils

    [24]

    GIANNELLI G, SANTORO A, KELLEY R K, et al. Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib[J]. PLoS One, 2020, 15(3): e0222259. doi: 10.1371/journal.pone.0222259

    [25]

    WINTERBOURN C C, KETTLE A J, HAMPTON M B. Reactive oxygen species and neutrophil function[J]. Annu Rev Biochem, 2016, 85: 765-792. doi: 10.1146/annurev-biochem-060815-014442

    [26]

    GRANOT Z, HENKE E, COMEN E A, et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung[J]. Cancer Cell, 2011, 20(3): 300-314. doi: 10.1016/j.ccr.2011.08.012

    [27]

    KLAUNIG J E. Oxidative stress and cancer[J]. Curr Pharm Des, 2019, 24(40): 4771-4778. doi: 10.2174/1381612825666190215121712

    [28]

    LAWRENCE S M, CORRIDEN R, NIZET V. The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis[J]. Microbiol Mol Biol Rev, 2018, 82(1): e0005717. http://europepmc.org/abstract/MED/29436479

    [29]

    CUI N, HU M, KHALIL R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73. http://www.sciencedirect.com/science/article/pii/S1877117317300327

    [30]

    SHEN Z H, WANG X, YU X T, et al. MMP16 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma[J]. Oncotarget, 2017, 8(42): 72197-72204. doi: 10.18632/oncotarget.20060

    [31]

    SMITH B N, BHOWMICK N A. Role of EMT in metastasis and therapy resistance[J]. J Clin Med, 2016, 5(2): E17. doi: 10.3390/jcm5020017

    [32]

    STEENBRUGGE J, BREYNE K, DEMEYERE K, et al. Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 191. doi: 10.1186/s13046-018-0860-x

    [33]

    EL RAYES T, CATENA R, LEE S, et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1[J]. Proc Natl Acad Sci USA, 2015, 112(52): 16000-16005. doi: 10.1073/pnas.1507294112

    [34]

    ZHOU S L, ZHOU Z J, HU Z Q, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib[J]. Gastroenterology, 2016, 150(7): 1646-1658.e17. doi: 10.1053/j.gastro.2016.02.040

    [35]

    BRINKMANN V, REICHARD U, GOOSMANN C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535. doi: 10.1126/science.1092385

    [36]

    TEIJEIRA Á, GARASA S, GATO M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.e8. http://www.researchgate.net/publication/346799808_755_CXCR1_and_CXCR2_chemokine_receptor_agonists_produced_by_tumors_induce_neutrophil_extracellular_traps_that_interfere_with_immune_cytotoxicity

    [37]

    YANG L Y, LUO Q, LU L, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response[J]. J Hematol Oncol, 2020, 13(1): 3. doi: 10.1186/s13045-019-0836-0

    [38]

    HARIMOTO N, YOSHIZUMI T, SHIMAGAKI T, et al. Inflammation-based prognostic score in patients with living donor liver transplantation for hepatocellular carcinoma[J]. Anticancer Res, 2016, 36(10): 5537-5542. doi: 10.21873/anticanres.11137

    [39]

    YANG H J, GUO Z, YANG Y T, et al. Blood neutrophil-lymphocyte ratio predicts survival after hepatectomy for hepatocellular carcinoma: a propensity score-based analysis[J]. World J Gastroenterol, 2016, 22(21): 5088-5095.

    [40]

    LIU C, LI L, LU W S, et al. Neutrophil-lymphocyte ratio plus prognostic nutritional index predicts the outcomes of patients with unresectable hepatocellular carcinoma after transarterial chemoembolization[J]. Sci Rep, 2017, 7(1): 13873. http://www.ncbi.nlm.nih.gov/pubmed/29066730

    [41]

    LLOVET J M, BRUIX J. Novel advancements in the management of hepatocellular carcinoma in 2008[J]. J Hepatol, 2008, 48(Suppl 1): S20-S37. http://esmoopen.bmj.com/lookup/external-ref?access_num=18304676&link_type=MED&atom=%2Fesmoopen%2F1%2F2%2Fe000042.atom

    [42]

    European Association for the Study of the Liver. Electronic address: easloffice@easloffice. eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 182-236.

  • 期刊类型引用(4)

    1. 朱荣火,黄晶晶,黄鸿娜,杜沅沁,钟瑞熙,农耀斌,宋文选. 基于四种机器学习算法建立预测肝癌切除术后复发模型. 中西医结合肝病杂志. 2023(03): 202-208 . 百度学术
    2. 李东旭,柳家翠,段怡平,陈梁玥,马甜甜,朱翠雯,张晓洋,喻明霞,唐艳. 基于生物信息学分析MTMR2基因在HCC中的表达及临床意义. 分子诊断与治疗杂志. 2023(05): 858-862 . 百度学术
    3. 朱荣火,黄晶晶,黄鸿娜,杜沅沁,农耀斌,徐健,孙安娜. 肝细胞癌切除术后早期复发的危险因素. 实用肿瘤杂志. 2023(04): 377-381 . 百度学术
    4. 孙姚承,汤建军,魏来,杭苏宁,仓杰,王梦涛,奚剑波. ALKBH5对人肝癌细胞上皮间质转化的影响. 实用临床医药杂志. 2022(15): 69-74 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  356
  • HTML全文浏览量:  223
  • PDF下载量:  35
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2021-07-07
  • 发布日期:  2021-07-14

目录

/

返回文章
返回