全身炎症反应指数与动脉瘤性蛛网膜下腔出血术后症状性脑血管痉挛的关系及Nomogram预测模型的建立

张振, 张恒柱, 李育平, 严正村, 董伦, 王晓东, 王杏东

张振, 张恒柱, 李育平, 严正村, 董伦, 王晓东, 王杏东. 全身炎症反应指数与动脉瘤性蛛网膜下腔出血术后症状性脑血管痉挛的关系及Nomogram预测模型的建立[J]. 实用临床医药杂志, 2020, 24(10): 36-40. DOI: 10.7619/jcmp.202010009
引用本文: 张振, 张恒柱, 李育平, 严正村, 董伦, 王晓东, 王杏东. 全身炎症反应指数与动脉瘤性蛛网膜下腔出血术后症状性脑血管痉挛的关系及Nomogram预测模型的建立[J]. 实用临床医药杂志, 2020, 24(10): 36-40. DOI: 10.7619/jcmp.202010009
ZHANG Zhen, ZHANG Hengzhu, LI Yuping, YAN Zhengcun, DONG Lun, WANG Xiaodong, WANG Xingdong. Relationship between systemic inflammation response index and symptomatic cerebral vasospasm after aneurismal subarachnoid hemorrhage as well as construction of a Nomogram predictive model[J]. Journal of Clinical Medicine in Practice, 2020, 24(10): 36-40. DOI: 10.7619/jcmp.202010009
Citation: ZHANG Zhen, ZHANG Hengzhu, LI Yuping, YAN Zhengcun, DONG Lun, WANG Xiaodong, WANG Xingdong. Relationship between systemic inflammation response index and symptomatic cerebral vasospasm after aneurismal subarachnoid hemorrhage as well as construction of a Nomogram predictive model[J]. Journal of Clinical Medicine in Practice, 2020, 24(10): 36-40. DOI: 10.7619/jcmp.202010009

全身炎症反应指数与动脉瘤性蛛网膜下腔出血术后症状性脑血管痉挛的关系及Nomogram预测模型的建立

基金项目: 

江苏省卫生健康委科研项目(H2018064)

详细信息
    通讯作者:

    张恒柱,E-mail:zhanghengzhu@sina.com

  • 中图分类号: R743

Relationship between systemic inflammation response index and symptomatic cerebral vasospasm after aneurismal subarachnoid hemorrhage as well as construction of a Nomogram predictive model

  • 摘要: 目的 探讨动脉瘤性蛛网膜下腔出血(aSAH)术后症状性脑血管痉挛(SCVS)的危险因素,并建立SCVS发生的Nomogram预测模型。 方法 将手术治疗的125例aSAH患者依据是否发生SCVS分为SCVS组与非SCVS组。采用Logistic回归分析确定SCVS发生与全身炎症反应指数(SIRI)的关系,以及其他相关危险因素。应用Nomogram法对各个因素进行评分,构建预测模型。采用受试者工作特征曲线(ROC)评价SIRI及Nomogram模型对SCVS发生的预测价值。 结果 19例aSAH患者术后并发SCVS, 发生率为15.20%(19/125)。SCVS组与非SCVS组吸烟、高血压、入院时Hunt-Hess分级、动脉瘤数目、合并脑室积血(IVH)、改良Fisher分级、甘油三酯(TG)、单核细胞计数及SIRI水平有显著差异(P<0.01)。多因素Logistic回归分析显示,合并高血压、入院时Hunt-Hess分级(Ⅳ~Ⅴ级)、合并IVH、改良Fisher分级(Ⅳ~Ⅴ级)、高TG水平和SIRI水平是aSAH患者发生SCVS的独立危险因素(P<0.05)。当TG=2.24 mmol/L、SIRI=3.63×109/L时,其约登指数最大(0.312、0.296), 是预测SCVS发生的最佳截断值,同时其预测准确度[ROC曲线下面积(AUC)]、敏感性、特异性、阳性预测值及阴性预测值分别为0.743、72.70%、80.10%、77.53%、94.24%和0.725、70.60%、76.90%、73.49%、93.59%。ROC分析结果显示,结合SIRI和其他标准变量的模型(AUC=0.896, 95%CI为0.803~0.929, P<0.001)比未结合SIRI的模型(AUC=0.859, 95%CI为0.759~0.912, P<0.001)和仅基于SIRI的模型(AUC=0.725,95%CI为0.586~0.793, P=0.001)对SCVS具有更佳的预测价值。进一步行AUC假设检验,发现AUC结合/不结合SIRI模型与AUC仅基于SIRI的模型的差异均有统计学意义(Z=4.029, P<0.001; Z=3.734, P=0.003)。 结论 SIRI与aSAH术后SCVS密切相关,且结合SIRI共建Nomogram模型将优化预测效能,提高对SCVS发生的早期识别和筛选能力。
    Abstract: Objective To investigate the risks factors of postoperative symptomatic cerebral vasospasm(SCVS)after aneurysmal subarachnoid hemorrhage(aSAH)and construct a Nomogram model for prediction of SCVS incidence. Methods Totally 125 aSAH patients with surgical treatment were divided into SCVS group and non-SCVS group according to occurrence of SCVS. Logistic regression analysis was used to determine the relationship between the occurrence of SCVS and systemic inflammatory response index(SIRI), and other related risk factors. The Nomogram method was used to evaluate each factor and construct a prediction model. Receiver operating characteristic(ROC)curve- was drawn to assess the values of SIRI and Nomogram model in predicting the occurrence of SCVS. Results The incidence of SCVS was 15.20%(19/125)in 19 aSAH patients. There were significant differences in smoking, hypertension, Hunt-Hess grade at hospital admission, number of aneurysms, intraventricular hematocele(IVH), modified Fisher grade, triglyceride(TG), monocyte count and SIRI between SCVS group and non-SCVS group(P<0.01). Multivariate Logistic regression analysis showed that hypertension, Hunt-Hess grade(IV or V grade), IVH, modified Fisher grade(IV to V grade), high TG level and SIRI level were independent risk factors of SCVS in aSAH patients(P<0.05). When TG level was 2.24 mmol/L and SIRI level was 3.63×109/L, their Youden indexes were the largest(0.312, 0.296), which were the best cut-off values for predicting the occurrence of SCVS. At the same time, their predictive accuracy [area under ROC curve(AUC)], sensitivity, specificity, positive predictive value and negative predictive value were 0.743, 72.70%, 80.10%, 77.53%, 94.24% and 0.725, 70.60%, 76.90%, 73.49%, 93.59% respectively. ROC analysis showed that the model combined with SIRI and other standard variables(AUC=0.896, 95%CI=0.803~0.929, P<0.001)had better predictive value for SCVS than the model without SIRI(AUC=0.859, 95%CI=0.759~0.912, P<0.001)and the model only based on SIRI(AUC=0.725, 95%CI=0.586~0.793, P=0.001). The further AUC hypothesis test showed that there were significant differences between the AUCcombined with or without SIRI model and AUConly based on SIRI model(Z=4.029, P<0.001; Z=3.734, P=0.003). Conclusion SIRI is closely correlated with the occurrence of postoperative SCVS in patients with aSAH, and the construction of Nomogram model with combination of SIRI is helpful for optimizing forecast performance and enhancing the early identification and screening abilities for incidence of SCVS.
  • Miller B A, Turan N, Chau M, et al. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage[J]. Biomed Res Int, 2014, 2014: 384342-384347.

    Lucke-Wold B P, Logsdon A F, Manoranjan B, et al. Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review[J]. Int J Mol Sci, 2016, 17(4): 497-503.

    曲良卓. 蛛网膜下腔出血颅内血管痉挛及炎症的相关标记物探讨[J]. 中国实用神经疾病杂志, 2018, 21(19): 2165-2170.

    Zheng S H, Huang J L, Chen M, et al. Diagnostic value of preoperative inflammatory markers in patients with glioma: a multicenter cohort study[J]. J Neurosurg, 2018, 129(3): 583-592.

    Zhang F, Tao C Y, Hu X, et al. Association of neutrophil to lymphocyte ratio on 90-day functional outcome in patients with intracerebral hemorrhage undergoing surgical treatment[J]. World Neurosurg, 2018, 119: e956-e961.

    Tao C Y, Wang J J, Hu X, et al. Clinical value of neutrophil to lymphocyte and platelet to lymphocyte ratio after aneurysmal subarachnoid hemorrhage[J]. Neurocrit Care, 2017, 26(3): 393-401.

    Qi Q, Zhuang L P, Shen Y H, et al. A novel systemic inflammation response index(SIRI)for predicting the survival of patients with pancreatic cancer after chemotherapy[J]. Cancer, 2016, 122(14): 2158-2167.

    Li S, Xu H X, Wang W Q, et al. The systemic inflammation response index predicts survival and recurrence in patients with resectable pancreatic ductal adenocarcinoma[J]. Cancer Manag Res, 2019, 11: 3327-3337.

    孙久君, 何朝晖, 唐玖宁, 等. 血红蛋白浓度与动脉瘤性蛛网膜下腔出血术后症状性脑血管痉挛的相关研究[J]. 中国神经精神疾病杂志, 2014, 40(5): 275-278.

    Wong G K, Boet R, Ng S C, et al. Ultra-early(within 24 hours)aneurysm treatment after subarachnoid hemorrhage[J]. World Neurosurg, 2012, 77(2): 311-315.

    de Oliveira Manoel A L, Macdonald R L. Neuroinflammation as a target for intervention in subarachnoid hemorrhage[J]. Front Neurol, 2018, 9: 292-297.

    Ma C X, Zhou W, Yan Z Y, et al. Toll-like receptor 4(TLR4)is associated with cerebral vasospasm and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage[J]. Neurol Med Chir(Tokyo), 2015, 55(12): 878-884.

    Ciurea A V, Palade C, Voinescu D, et al. Subarachnoid hemorrhage and cerebral vasospasm - literature review[J]. J Med Life, 2013, 6(2): 120-125.

    Pacheco-Barcia V, Mondéjar Solís R, France T, et al. A systemic inflammation response index could be a predictive factor for mFOLFIRINOX in metastatic pancreatic cancer[J]. Pancreas, 2019, 48(5): e45-e47.

    Geng Y T, Zhu D X, Wu C, et al. A novel systemic inflammation response index(SIRI)for predicting postoperative survival of patients with esophageal squamous cell carcinoma[J]. Int Immunopharmacol, 2018, 65: 503-510.

  • 期刊类型引用(13)

    1. 王丹丹,杜鑫,李曼曼. 蛛网膜下腔出血患者疾病不确定感水平现状及影响因素分析. 心理月刊. 2024(24): 26-28 . 百度学术
    2. 杨在平,温兴华,陈远亮,王芸林. 颅内动脉瘤破裂患者术后脑血管痉挛发生情况及影响因素分析. 中国医学创新. 2023(01): 123-126 . 百度学术
    3. 王素青,黄生炫,杨帆. 尼莫地平术中灌洗对颅内动脉瘤术后脑血管痉挛的影响. 中国医药. 2023(03): 376-380 . 百度学术
    4. 姜海洋,陈虎,张登文. sLOX-1 HIF-1α IGF-1对动脉瘤性蛛网膜下腔出血后迟发性脑缺血的预测价值研究. 河北医学. 2023(02): 280-284 . 百度学术
    5. 徐春富,仇圣刚,袁周. 隐匿性脑血管畸形出血接受介入栓塞术的效果与并发症发生率分析. 齐齐哈尔医学院学报. 2023(10): 938-941 . 百度学术
    6. 陈昶春,柯志通,钟晖东. 动脉瘤性蛛网膜下腔出血后迟发性脑缺血的影响因素及预测模型的构建. 中西医结合心脑血管病杂志. 2023(17): 3262-3265 . 百度学术
    7. 刘晓斌,孙丽珍. 基于目标血压管理的程序化护理对脑动脉瘤患者围术期血压控制的影响. 心血管病防治知识. 2023(34): 46-48 . 百度学术
    8. 赵楠楠,郑印,黄穹琼,姜旭. 急性缺血性脑卒中早期预后不良的危险因素分析及预测模型构建. 中国临床研究. 2022(04): 456-461 . 百度学术
    9. 付建辉,周键,陈奇翰,徐良. 动脉瘤性蛛网膜下腔出血患者介入栓塞术后发生脑血管痉挛的影响因素分析. 心电与循环. 2022(02): 169-172+178 . 百度学术
    10. 张峰涛,王冠军,赵中甫. 蛛网膜下腔出血患者脑血管痉挛危险因素分析. 新乡医学院学报. 2022(05): 450-453 . 百度学术
    11. 林诗荣,廖圣芳,陈少伟,黄国河,林国诗. 介入栓塞术对aSAH患者HMGB1、Copeptin和MMP-9的影响. 中南医学科学杂志. 2021(05): 572-574 . 百度学术
    12. 李政文,李劲松,温茂昌,谢成金. CRP、Hcy水平与动脉瘤性蛛网膜下腔出血患者预后的相关性. 中国卫生标准管理. 2021(24): 67-70 . 百度学术
    13. 陈明,张清秀,魏秀娥. 动脉瘤性蛛网膜下腔出血患者外周血miR-210与TLR4表达的相关性及临床意义. 分子诊断与治疗杂志. 2020(12): 1665-1669 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  335
  • HTML全文浏览量:  80
  • PDF下载量:  11
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-02-04
  • 网络出版日期:  2020-08-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭